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INntroduction

California Assessment of Student Performance and
Progress (CAASPP)

Measure how well students are achieving academic standards in
English language arts/literacy and mathematics



Problem Statement

Strong need to find more informed and granular causes
that impact the test achievements of schools

We aim to predict and find the inferior groups of schools
that indeed need help

Schools should strive to create an environment where all students feel
valued and all students are learning to high standards



—Xpected Beneficiaries

Administrators of the school districts/state departments
of education or other organizations

Can allocate budgets and human resources for tutoring, mentoring,
extracurricular programs, and educational consultants

eachers

Can put much more effort into the under-performing groups to reduce
the achievement gaps

Parents

Can select a good school that meets the high academic standards



Data Wrangling

Collecting and cleaning data
CAASPP test score data in 2018 (California Department of Education)

House prices (Zillow research data)

FIXIng missing values

Imputed using the statistics of the mean of each column in which the
missing values are located

Adding new variables

By manipulating or merging existing variables to tell new insights or to
reduce the dimensionality



Data Visualization

- Research Questions

RQ1. How the students are different in achievement levels?

Compared for each category of gender, ethnicity, English-language fluency,
economic status, disability status, and parent educations using the bar plots

RQ2. What features can you find in the top and bottom performance
groups”?

Compared the best and worst 10% performing counties using the bar plots

RQ3. Are house prices correlated to the exceeded scores or the
Inferior scores”?

Analyzed the correlations using scatterplots



Achievement Levels by Gender

Female students exceed male students in English, while
male students exceed female students in Mathematics.
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Achievement Levels by

—thnicity

County : Ethnicity
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Achievement Levels by English-Language Fluency

County : English-Language Fluency
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Achievement Levels by Economic Status

-+ Economically disadvantaged students have much more

difficulties than not-economically disadvantaged students.
County : Economic Status
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Achievement Levels by Disablility Status

Only the small number of students with disabilities
(English: 4.6\%, mathematics: 4.5\%) could achieve the
b eS_t p erf Orm an C e . County : Disability Status
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Achievement Levels by

Parent

—ducation

County : Parent Education

-+ The higher the level of
parental education, the _.
higher the achievement .
of students. o
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House Prices In Best and Worst 10% Performance
Counties

Test performance is closely related to the economic
capabilities of the family to which the student belongs.

Test |Id = Mathematics
1750000

1500000

1250000

c

=

B 1000000

EI

QO

S 750000

I° — Top

== Bottom

500000

o I I I I I

(=]

Mend



Correlations Between
Test achievements and House Prices

Strong positive correlations between “percentage of
standard exceeded” and house prices
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Correlations Between
Test achievements and House Prices

Strong negative correlations between “percentage of
standard not met” and house prices

000000000000000000000000000000000000000000000000



=Xploratory Data Analysis

Significant number of features can be redundant and
Irrelevant, therefore it is important to apply feature
selection/dimension reduction

Methods

Statistical hypothesis testing
Correlation test

Feature selection



Statistical Hypothesis Testing

- [-Test for means of two independent samples

Process

Tests whether the means of two independent samples are significantly different

If there is no difference (p-value is greater or equal than a= 0.05), then we
eliminate or merge the weak affecting student group indicators

Decisions for variables

Delete the meaningless indicators such as, "To be determined (TBD)"' and
'Declined to state’

Delete the 'Disability Status', 'Economic Status’ that seem rather trivial that do
not produce any new results
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— Number of Hispanics is highly correlated (0.94) with the humber of
economically disadvantaged student



Feature Selection

- Univariate selection

- SelectKBest class using the chi-squared as a scoring function to select
20 best features

- Feature importance

+  Extra Tree Classifier for extracting the top 20 features for the dataset
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Machine Learning Modeling

The goal is to predict the inferior scores of schools

Various machine learning techniques to pick the one which performs best

Methods

Regression

Predicts the percentage of students who do not meet the standard

Classification

Predicts if the schools “need help” or “do not need help”



Regression

Cross Validation
Train/Test Split, Leave One Out (LOO), K-Fold CV

Evaluation Metrics
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R2

Algorithms

Linear Regression

Random Forest Regressor

Gradient Boosting Regressor



-+ The Random Forest Regressor worked best

Results of Accuracy for Regression Models

Model Name RMSE | MAE R?
Linear Regression with 1 folds Train and test split 11.2853 | 8.2113 | 0.6614
Linear Regression with 8,768 folds Leave One Out (LOO) | 11.3417 | 8.2913 | 0.0000
Linear Regression with 10 folds CV 11.7262 | 8.5554 | 0.6233
Random Forest Regressor with 10 folds CV 10.7661 | 7.6911 | 0.6763
Gradient Boosting for Regression with 10 folds CV 11.4108 | 8.3881 | 0.6368




Classification: Preprocessing data

New binary target variable, “NeedHelp”, indicating a
school needs help or not

80% of the standard not met students as 1, otherwise O

Data splitting into train data and test data of 70% and 30%

For parameter tuning, we use the cross validation in the train data and
build the machine learning model, then validate the model with the
remained test data

Scaling

For the K-Nearest Neighbor algorithm, we scale the independent variables
into the range such that the range is now between O and 1



Classification

Resolving imbalanced classes

Stratified K-folds cross validation

Ensures that the percentages of each class in your entire data will be the same
within each individual fold

Weighted evaluation metrics to reflect the mass of the classes

Evaluation Metrics

Accuracy, AUC, Precision, Recall, score F1

Algorithms

Logistic Regression, Decision Tree, GridSearchCV for Parameter Tuning for
Decision Tree, Random Forest Classifier, and k-Nearest Neighbors Classifier



Classification

- Decision Tree with GridSearchCV (Stratified 5-Folds CV)

Parameters
{'max_depth': [50, 75, 100], 'min_samples_leaf": [1, 2, 4, 8, 10]}
Best parameters for the best Decision Tree model
{'max_depth": 50, 'min_samples_leaf": 8}.
Results model evaluation

Best accuracy: 0.9684, best roc_auc_score: 0.9070, weighted avg precision:
0.9666, weighted avg recall: 0.9684, and weighted avg f1-score: 0.9674.




Classification: Boxplots of Accuracy Comparison
for Gridsearch CV Models

Random Forest Classifier model has the highest accuracy

Accuracy Comparison: Models using GridSearchCV




Results for the
Models

Performance of Classification

Random Forest Classifier with GridSearchCV worked best

Parameters: {'max_depth': 100, 'min_samples_leaf': 1, 'n_estimators': 200}

After applying the scaler to the K-Nearest Neighbor

model, the accuracy has been significantly improved

Model Name accuracy auc precision | recall fl
Logistic Regression with Stratified 5-Folds CV 0.9656 | 0.9656 | 0.9646 | 0.9656 | 0.9597
Decision Tree with Stratified 5-Folds CV 0.9596 | 0.7320 | 0.9660 0.9596 | 0.9614
Decision Tree with GridSearchCV 0.9684 | 0.9070 | 0.9666 0.9684 | 0.9674
Random Forest Classifier with GridSearchCV 0.9733 | 09774 | 0.9711 0.9733 | 0.9718
K-Nearest Neighbor with GridSearchCV (No Scale) | 0.9650 | 0.7309 | 0.9556 0.9650 | 0.9526
K-Nearest Neighbor with GridSearchCV (Scaling) 0.9728 | 0.9618 | 0.9692 0.9728 | 0.9695




Recommendations

't Is obvious that that the high scores of schools are

strongly correlated with the students raised in high-
iIncome families.

In my opinion, the schools need the help

Schools have more than 73.14% of students of low-income families,

House median prices are less than $335,500 (more urgent help is
needed when the house prices are when less than $194,350)

Parents who do not graduate high schools is more than 89.1%,

Parents who do not graduate colleges is more than 84.9%, or

Hispanic or Black students is more than 67.2%



Conclusion

Analyzed the CAASPP score data to help predict and find the inferior
groups of schools that indeed need help and provide suggestions

Data wrangling
Data visualization
Exploratory Data Analysis

Machine Learning Modeling

Future Work

To identify the factors that could effectively improve the scores, we will investigate the
scores of the 5 consecutive years (2014 to 2018)

We expect to find the important features on the schools in which the scores have been
dramatically improved



