
ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr)

Making an evolvable software:
Refactoring

Dr. Ah-Rim Han



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 2

Today’s Topic

v Software Engineering
v Refactoring

v Why Need Refactoring?
v What is Refactoring?
v Refactoring Process
v Bad Smells : Software Design Problems
v Refactoring Types
v Refactoring Assessment : Maintainability

v Coupling and Cohesion metrics
v Research Trends

v Doing Ph.D.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 3

Software Engineering?



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 4

Definition

vIEEE’s Standard 610.12-1990 : Glossary of 
Software Engineering Terminology
§ Software engineering is defined as the application of a 

systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 5

Definition

vDavid Lorge Parnas
§ Software engineering is defined as the multi-person 

construction of multi-version software

David Lorge Parnas



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 6

In My Point of View…

vAims at providing the automated tools, techniques, 
processes to assist developers, managers, and 
stakeholders for systematic software development



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 7

Needs Due to More…

vLarge, complex, safety-critical software

vCollaborative environment
vFast time-to-market …

à Automobile is an embedded system in which software plays an important role

* ECU: Engine Control Unit

日도요타급가속기술결함..美법원첫평결
최종수정 2013.10.26 21:19기사입력 2013.10.26 21:19

•국제부백종민
[아시아경제백종민기자] 일본도요타차량에서전자장치불량으로급발진이일어났다는미국법원배심원평결이나와사측이피해자와합의했다.

지금까지도요타는미국에서수많은급발진소송에휘말렸지만전자장치불량등기술하자를시인한적없어비슷한소송에영향을미칠지주목된다.

미국과일본양국의언론이이번사례를집중적으로다룬이유다. 미국내도요타급가속사례피해자의소송에중요한계기가될수있다고외신들은
분석했다.

도요타는 2007년오클라호마주에서일어난캠리승용차의급발진사건과관련해 25일(현지시간) 피해자들과합의했다고 AP통신과 LA타임스등이
보도했다. 합의금등조건은양측합의에따라비밀에부쳐졌다. 시사통신등일본언론들도같은사실을상세히전했다.

전날오클라호마주 1심법원배심원단은차량의전자식엔진조절장치의불량때문에급발진이일어났다면서도요타가피해자들에게
300만달러(31억800만원)를배상하라는평결을내렸다.

이 300만달러는순수한손해배상금으로당시배심원단은도요타가과실에따라내야할추가 '징벌배상금'은정하지않은상태였다.

도요타가합의에나선것은판결로생길이미지실추를서둘러막으려는선제적조처로풀이된다.

도요타는미국에서급발진사고가잇따르자 1400만대를리콜하고화해금이나배상금으로거금을냈지만 '운전자조작과실이거나바닥매트가가속페달을
눌러문제가일어났다'는주장을굽히지않았다.

특히이번재판에서는한소프트웨어(SW) 전문가가사고를일으킨 2005년형캠리의엔진전자장치 SW 코드를분석하고법정에출석해 '복합적 SW 문제가
인정된다'고증언한것이결정적영향을미친것으로풀이된다.

도요타는미연방법원에서도여러건의소송에서전자장치불량과급발진문제의책임을다투고있다.

그러나연방법원평결은배심원단의전원합의가필요해다수결평결방식인주(州)법원과다르게도요타가패소할가능성은작을것으로보인다.

이번오클라호마주재판에서도피해자측의손을들어준배심원은평결이성립되는최소인원인 9명에그치는등내부격론이적지않았다고 LA타임스는
전했다.

이번소송은 2007년 9월진북아웃이몰던캠리가오클라호마주의한고속도로출구에서급발진하면서일어난사건에관한것이다.

차는인근장벽에부딪쳐운전자는중상을입었고함께차에있던승객 1명이사망했다.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 8

Refactoring



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 9

Why Need Refactoring?

vSoftware changes
§ Introducing new functionalities
§ Correcting bugs
§ Adapting new environments

• New OS, new hardware
§ Providing better qualities

• Better performance, better reliability, …

àChanges often take place without consideration of the design 
rationale due to time constraints

àTherefore, the design quality of the software may degrade 
overtime



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 10

Why Need Refactoring?

vCost of change curve



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 11

Why Need Refactoring?

vRefactoring improves the design of software
vRefactoring makes software easier to understand
vRefactoring helps you program faster

àThese help to fix bugs and accommodating changes in a easier 
and faster way, which improves maintainability of the 
software

àAt the end, this reduces maintenance costs



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 12

What is Refactoring?

vWhat is refactoring?
§ Refactoring (noun): a change 

made to the internal structure of 
software to make it easier to 
understand and cheaper to 
modify without changing its 
observable behavior

§ Refactor (verb): to restructure 
software by applying a series of 
refactorings without changing 
its observable behavior

Martin Fowler’s book: “Refactoring: 
Improving the Design of Existing 
Code”, Addison Wesley, 1999



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 13

Refactoring Process

vIdentify places where the software should be 
refactored

vDetermine which refactoring(s) should be applied
vGuarantee that the applied refactoring preserves 

behavior 
vApply the refactoring
vAssess the effect of the refactoring on quality (e.g., 

maintainability, testability, understandability)
vMaintain the consistency between the refactored 

program code and other software artifacts
T. Mens, T. Tourwe, “A Survey of Software Refactoring”, IEEE Transactions on Software Engineering (2004), pp. 126-139



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 14

Refactoring Process



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 15

Bad Smells

vDivergent Change
§ When one class is commonly changed in different ways 

for different reasons
§ Solution: Extract Class, Move Method



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 16

Bad Smells

vShotgun Surgery 
§ Is similar to divergent change but the opposite

• Divergent change is one class that suffers many kinds of 
changes, and shotgun survey is one change that alters many 
classes

§ You have to make a lot of little changes to a lot of 
different classes

§ Solution: Move Method, Move Field, Inline Class
vFeature Envy

§ A method that seems more interested in a class other 
than the one it actually is in

§ Solution: Move Method



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 17

Refactoring Types

vMoving Features Between Objects

vComposing Methods

•Extract Class
•Hide Delegate
•Inline Class
•Introduce Foreign Method

•Introduce Local Extension
•Move Field
•Move Method
•Remove Middle Man

•Extract Method
•Inline Method
•Inline Temp
•Introduce Explaining Variable
•Remove Assignments to Parameters

•Replace Method with Method Object
•Replace Temp with Query
•Split Temporary Variable
•Substitute Algorithm



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 18

Refactoring Types

vOrganizing Data
•Change Bidirectional Association to Un
idirectional
•Change Reference to Value
•Change Unidirectional Association to B
idirectional
•Change Value to Reference
•Duplicate Observed Data
•Encapsulate Collection
•Encapsulate Field
•Replace Array with Object

•Replace Data Value with Object
•Replace Magic Number with Symbolic 
Constant
•Replace Record with Data Class
•Replace Subclass with Fields
•Replace Type Code with Class
•Replace Type Code with State/Strateg
y
•Replace Type Code with Subclasses
•Self Encapsulate Field



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 19

Refactoring Types

vSimplifying Conditional Expressions

vDealing with Generalization

•Consolidate Conditional Expression
•Consolidate Duplicate Conditional Frag
ments
•Decompose Conditional
•Introduce Assertion

•Introduce Null Object
•Remove Control Flag
•Replace Conditional with Polymorphis
m
•Replace Nested Conditional with Guar
d Clauses

•Collapse Hierarchy
•Extract Interface
•Extract Subclass
•Extract Superclass
•Form Template Method
•Pull Up Constructor Body

•Pull Up Field
•Pull Up Method
•Push Down Field
•Push Down Method
•Replace Delegation with Inheritance
•Replace Inheritance with Delegation



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 20

Refactoring Types

vMaking Method Calls Simpler

vBig Refactorings

•Add Parameter
•Encapsulate Downcast
•Hide Method
•Introduce Parameter Object
•Parameterize Method
•Preserve Whole Object
•Remove Parameter
•Remove Setting Method

•Rename Method
•Replace Constructor with Factory Meth
od
•Replace Error Code with Exception
•Replace Exception with Test
•Replace Parameter with Explicit Metho
ds
•Replace Parameter with Method
•Separate Query from Modifier

•Convert Procedural Design to Objects
•Extract Hierarchy
•Separate Domain from Presentation

•Tease Apart Inheritance
•The Nature of the Game



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 21

Refactoring Types

vExtract Class
§ You have one class doing work that should be done by 

two
§ à Create a new class and move the relevant fields and 

methods from the old class into the new class



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 22

Refactoring Types

vInline Class
§ A class isn't doing very much.
§ à Move all its features into another class and delete it.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 23

Refactoring Types

vPull Up Method
§ You have methods with identical results on subclasses.
§ à Move them to the superclass.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 24

Refactoring Types

vForm Template Method
§ You have two methods in subclasses that perform 

similar steps in the same order, yet the steps are 
different.

§ à Get the steps into methods with the same signature, 
so that the original methods become the same. Then 
you can pull them up.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 25

Refactoring Assessment

vMaintainability
§ Definition (from ISO 9126)

• The capability of the software product to be modified.
• Modifications may include corrections, improvements or 

adaptation of the software to changes in environment, and in 
requirements and functional specification

§ Maintainability is influenced by a lot of sub-qualities



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 26

Refactoring Assessment

vCoupling 
§ a measure of how strongly dependent one software unit 

is on other software units
• unit = class, package, module, method, application, etc.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 27

Refactoring Assessment

vCohesion
§ a measure of how strongly related and focused the 

responsibilities and provided behavior of a software unit 
are

à Good design = high maintainability
low coupling and high cohesion



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 28

Cohesion Metrics

vMethod Similarity Cohesion (MSC) [0]

vLack of Cohesion in Methods (LCOM) [1]
vCohesion Among Methods in Class (CAMC) [2]



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 29

Coupling Metrics

vMessage Passing Coupling (MPC) [3] 
§ Counts static method calls for all invoked methods in 

the import direction
vRequest For a Class (RFC) [1] 

§ Counts static method calls for distinct methods in the 
import direction

vCoupling Between Objects (CBO) [1] 
§ Counts static method calls for distinct methods in both 

directions. 
vCoupling Factor (CF) [4]

§ The coarse-grained metrics / measured based on the 
number of coupled classes, not on the methods



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 30

Research Trends

Inheritance restructuring
Moore’s work[2] (1996)

• Focus on implementation issues (e.g., maximizing sharing and 
minimizing duplication at method or expression level)

Approach for supporting 
refactoring activities
Kataoka’s work[6] (2002) &
Tahvildari’s work[3] (2004)

Refactoring
Martin Fowler’s work[7] (1999)

• Start to focus on improving software design quality; therefore, 
consider higher levels such as methods and classes

• Provide methods such as
- Design flaw detection (or bad smell detection) 
- Evaluation of refactoring effect on design quality
- Program behavior preservation, etc.

Search-based refactoring
O’Keefee’s work[4] (2006~2008)

• Want to automate the full refactoring process (without human 
intervention) by treating OO design as an optimization problem

Refactoring opportunity 
identification

Tsantalis’s work[5] (2009)

• Provide the method for automated identification (i.e., 
suggestion) of specific refactoring opportunities to resolve 
specific design problems or to improve specific design quality 
(which does not depend on random choice)



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 31

Doing Ph.D.



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 32

Life in the laboratory

vAttend and have a seminar
vDiscuss research topics in the SIG (Study In 

Group) 
vAttend the conferences
vMT

International Conference on Software Engineering (2006)

Berry Bohem
(COCOMO)

Korean Conference on Software Engineering

Lionel Briand
Gregg Rothermel Richard Taylor

Asia Pacific Conference on Software Engineering (2013)

Korea Computer Congress (KCC)



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 33

How Hard… But, It’s Worth!!!



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 34

Qualification to be Succeed in Ph.D

vFundamental basis
§ Algorithm, data base, automata, system programming, 

compiler, graphics, artificial intelligence, network, 
operating systems, computer architecture, stochastic, 
…

vEnglish skills (presentation, discussion, writing a 
paper, …)

vCommunication skills
vSelf-motivated



ⓒ All copyrights are reserved by Ah-Rim Han, Ph.D. at Korea University (arhan@korea.ac.kr) 35

References
v Lecture notes from Dr. Miryung Kim

§ http://users.ece.utexas.edu/~miryung/teaching/EE461L-Fall2013/main.html
v Lecture notes 

§ http://kurser.lobner.dk/dSoftArk/Slides/w44-45/4_3_maintainability.pdf
v Refactoring materials: 

§ http://sourcemaking.com/refactoring
v Martin Fowler’s book: “Refactoring: Improving the Design of Existing Code”, Addison Wesley, 1999

§ http://martinfowler.com/refactoring/

v [0] C. Bonja, E. Kidanmariam, Metrics for class cohesion and similarity between methods, in: 
Proceedings of the 44th Annual Southeast Regional Conference, 2006, pp. 91–95.

v [1] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE Transactions on 
Software Engineering 20 (1994) 476–493.

v [2] J. Bansiya, L. Etzkorn, C. Davis, W. Li, A class cohesion metric for objectoriented designs, journal 
of object-oriented program, Journal of Object-Oriented Program 11 (1999) 47–52.

v [3] W. Li, S. Henry, Object-oriented metrics that predict maintainability, Journal of Systems and 
Software 23 (1993) 111–122.

v [4] L. Briand, J. Daly, J. Wust, A unified framework for coupling measurement in object-oriented 
systems, IEEE Transactions on Software Engineering 25 (1999) 91–121.


