
Identification and Selection of Refactorings
for Improving Maintainability
of Object-Oriented Software

Ah-Rim Han

Dept. of Computer Science
KAIST

2013. 5. 8

ⓒ KAIST SE LAB 2013

2/ 38ⓒ KAIST SE LAB 2013

Contents

v Introduction
v Main Approach

§ Refactoring Candidate Identification
• Extracting with Dynamic Information Based Rules
• RER-aware Grouping Entities into Maximal Independent Sets

(MISs)
§ Refactoring Selection

• Selecting Multiple Elementary Refactorings
v Evaluation
v Related Work
v Conclusion and Future Work

3/ 38ⓒ KAIST SE LAB 2013

Introduction

4/ 38ⓒ KAIST SE LAB 2013

v Object-oriented software undergoes continuous changes
with various maintenance activities
§ Ex) addition of new functionalities and correction of bugs

v Since the changes often take place without consideration
of the design rationale due to time constraints
§ The design quality of the software may degrade overtime

Software Changes and Need of Refactoring

“Refactoring can serve to restructure the design of object-
oriented software without altering its external behavior to
improve maintainability” [Fowler’1999]

à In this thesis, by refactoring, we aim to make
software for accommodating changes more easily

5/ 38ⓒ KAIST SE LAB 2013

v Activities for systematic refactoring identification process

Systematic Refactoring Identification Process

6/ 38ⓒ KAIST SE LAB 2013

v Refactoring identification using only static information
(captured by static source code analysis)
§ Refactorings candidates may be suggested on the pieces of

code
• Never used and never changes having occurred

Motivation and Research Goal (1/2)

àWhen establishing refactoring candidate extraction rules, we use dynamic
information

• Motivated by the previous study [Han’2010] that the data capturing how
the system is utilized (i.e., dynamic information) is an important factor
for estimating changes

• Investing efforts on the refactorings involving such codes may effectively
reduce maintenance cost

7/ 38ⓒ KAIST SE LAB 2013

v Determining refactoring sequences to be applied
§ The best refactoring selection in a greedy way

• Inefficient to select just one best refactoring for the iteration of
refactoring identification process

Motivation and Research Goal (2/2)

àFor each iteration of refactoring identification process, we select the
group of elementary refactorings (multiple refactorings) that can be
applied at a same time

• When grouping elementary refactorings, we consider refactorings’ effect
relevance (RER) on maintainability

8/ 38ⓒ KAIST SE LAB 2013

Thesis Overview

I. Refactoring Candidate Identification

Extracting with Dynamic Information
based Rules

RER-aware Grouping into Maximal
Independent Sets

Refactoring CandidatesRefactoring CandidatesRefactoring Candidates

Source Code of Object-Oriented Program

II. Refactoring Selection

Assessing the Effect
of Refactorings

Selecting Multiple
Refactorings

Selected Multiple Refactorings

Apply Selected
Refactorings Stop

No Improvement

Refactorings’ Effect
Evaluation Framework

• RER: Refactoring Effect Relevance

9/ 38ⓒ KAIST SE LAB 2013

What Have Been Improved from Proposal

I. Refactoring Candidate Identification

Extracting with Dynamic Information
based Rules

RER-aware Grouping into Maximal
Independent Sets

Refactoring CandidatesRefactoring CandidatesRefactoring Candidates

Source Code of Object-Oriented Program

II. Refactoring Selection

Assessing the Effect
of Refactorings

Selecting Multiple
Refactorings

Selected Multiple Refactorings

Apply Selected
Refactorings Stop

No Improvement

Newly developed

Refactorings’ Effect
Evaluation Framework

• RER: Refactoring Effect Relevance

10/ 38ⓒ KAIST SE LAB 2013

“Dynamic profiling-based approach to identifying cost-effective refactorings”,
Information and Software Technology (IST), Vol. 55, No. 6, pp. 966-985, Jun. 2013.

Refactoring Candidate Identification:
Extracting with Dynamic Information Based Rules

11/ 38ⓒ KAIST SE LAB 2013

v Overview

Extracting with Dynamic Information Based Rules

Operational profile or User
scenarios

Object-oriented source
code

Dynamic dependency Static dependency

Profiled model

Collapse Class Hierarchy and
Move Method refactorings

Extracting refactoring candidates

Refactoring
candidate

extraction rules

12/ 38ⓒ KAIST SE LAB 2013

v Change Preventing Related Design Problems
[Fowler’1999]
§ Many classes are modified when making a single change to

a system (e.g., Shotgun Surgery)
§ A single class is modified by many different types of changes

(e.g., Divergent Change)

v Resolving Refactorings
§ Refactorings should be applied in a way that reduces

dependencies of entities (i.e., methods and classes)
• Collapse Class Hierarchy and Move Method refactorings

Design Problems and Resolving Refactoring

13/ 38ⓒ KAIST SE LAB 2013

v Dynamic dependency enables to find
§ Entities being really in use
§ Frequency of the relations for those entities

v Dynamic dependencies (DMC)
§ Obtained using dynamic profiling by executing programs

• Based on dynamic method calls

Use of Dynamic Dependency

14/ 38ⓒ KAIST SE LAB 2013

Refactoring Candidate Extraction Rules

v Rules are defined for reducing dynamic dependencies for
identifying refactoring candidates
§ Total of 18 rules (6 types of heuristic design strategies ⅹ 3

types of refactorings)
• When the called methods are implemented in the N

(N = 2, 3, 4, 5, 6) different classes (NDiff)
– ∀(ci, cj) ∈ NDiff_C à Collapse Class Hierarchy (ci, cj)
– ∀(mi, mj) ∈ NDiff_M à Move Method (mi.class, mj)
– ∀(mi, mj) ∈ NDiff_M à Move Method (mj.class, mi)

• When the two methods have many interactions (Int)
– ∀(ci, cj) ∈ Int_C à Collapse Class Hierarchy (ci, cj)
– ∀(mi, mj) ∈ Int_M à Move Method (mi.class, mj)
– ∀(mi, mj) ∈ Int_M à Move Method (mj.class, mi)

• ci (mi) : class (method) entity in a system
• x_C (x_M) : pairs of classes (methods) extracted as refactoring

candidates

15/ 38ⓒ KAIST SE LAB 2013

Refactoring Candidate Identification:
RER-aware Grouping Entities into Maximal Independent Sets (MISs)

16/ 38ⓒ KAIST SE LAB 2013

MISs of EntitiesMISs of EntitiesMaximal Independent Sets of
Entities

v Overview

RER-aware Grouping Entities into MISs

Object Oriented Source Code

Constructing RER-aware Graph

Grouping Entities into Maximal
Independent Sets

RER-aware Graph

• RER: Refactoring Effect Relevance
• MIS: Maximal Independent Set

MIS4MIS3MIS2MIS1

17/ 38ⓒ KAIST SE LAB 2013

v Motivating example

Refactorings’ Effect Relevance (RER)

Example : applying Move Method(method m2, class A) and Move Method(method m1, class B)
Expected reduced coupling : -3 Actual reduced coupling: -1

Move Method(method m2, class A) = -2 Move Method(method m2, class A) = -2
Move Method(method m1, class B) = -1 Move Method(method m1, class B) = +1

After moving
method m2 to class A

Target	Class Target	Class

M
ov

in
g	
M
et
ho

d

M
ov

in
g	
M
et
ho

d

Delta	of	coupling	for	each	of	Move	Method	refactoring

18/ 38ⓒ KAIST SE LAB 2013

v G = (V, E) for the corresponding object-oriented program
is constructed
§ Representing entities (V) and their associations (E)

• V = {methods, attributes}
• E = {method_calls (method m1, method m2),

attribute_assesses1 (method m1, attribute a1),
attribute_assesses2(method m1, method m2)}

RER-aware Graph

• Associations:
1) a method calls the other method (method call)
2) a method assesses an attribute (attribute_assess1)
3) two methods assess the same attribute (attribute_assess2)

19/ 38ⓒ KAIST SE LAB 2013

v Procedure
v Based on G, intermediate groups of entities is obtained by

grouping the entities using transitive independent relations
v (u, v V and (u, v) E)

§ Then, remaining entities are assigned on the intermediate
groups of entities

• Until no more entities can be added to any other groups of
entities without violating the independence property

§ Finally, groups of entities (= MISs) are obtained; and
attributes are excluded from MISs

Grouping Entities into MISs

20/ 38ⓒ KAIST SE LAB 2013

Refactoring Selection

21/ 38ⓒ KAIST SE LAB 2013

v Overview

Selecting Multiple Elementary Refactorings

• MM : Move Method refactoring
• CCH : Collapse Class Hierarchy refactoring
• MIS : Maximal Independent Set of

refactorings
• GER: Group of Elementray Refactoring

Groups of Elementary Refactorings

R7

GER4
R4 R6

R5

GER3
R1

R2

GER1
R3

Object-Oriented Source Code

Delta Table

Refactorings’ Effect Evaluation Framework

Creating Link Matrix Creating Membership
Matrix

Link Matrix Membership Matrix

Deriving Delta Table

Accessing Effect of Refactorings

Selecting Multiple Elementary Refactorings

CCHs and MMsMISs

Transform into
Elementary Refactorings

Effect of
Refactorings

GER1 GER2 GER3 GER4 GER5

4 2 -2 1 3

MISs CCHs MMs

Selected Elementary
Refactorings

R1
R2

R3

Entities are mapped into
Elementary Refactorings

22/ 38ⓒ KAIST SE LAB 2013

v Delta Table (D)
§ Provides the method for evaluating elementary refactorings’

effect on maintainability
• Each element indicates ∆ maintainability

– Maintainability variance after the application of the elementary
refactoring on the current design configuration

• Maintainability is assessed by the number of external links
– This number of external links naturally represents lack of

cohesion and, at the same time, coupling
– As a result, by applying refactorings, we aim to reduce this

number for improving maintainability

§ Computed by matrix computation (fast)

Refactorings’ Effect Evaluation (1/2)

23/ 38ⓒ KAIST SE LAB 2013

v Delta Table derivation
§ Formulation

• LIntⅩ M = PInt; LExtⅩ M = PExt; Inv(PInt) - PExt = D
§ Example

Refactorings’ Effect Evaluation (2/2)

X =

X = — =

Delta	Table	(D)

Internal	link	matrix	(LInt)

External	link	matrix	(LExt)

Membership	matrix	(M)

Membership	matrix	(M)

Inversed	internal	
projection	matrix	
Inv(PInt)

External	
projection	
matrix	(PExt)

24/ 38ⓒ KAIST SE LAB 2013

Evaluation

25/ 38ⓒ KAIST SE LAB 2013

Research Questions

v [RQ 1.] Effect of dynamic information
§ Is the dynamic information helpful in identifying refactorings

that effectively improve maintainability?
v [RQ 2.] Effect of multiple refactorings

§ Do the multiple refactorings help to improve maintainability
and reduce search space exploration?

§ Is the RER an important when grouping entities into MISs?

RQ	1.	Effect	of	
dynamic	
information

RQ	2.	Effect	of	
multiple	
refactorings

26/ 38ⓒ KAIST SE LAB 2013

Experimental Subjects

v Characteristics and development history for each subject

Name
(Version)

jEdit
(jEdit-4.3)

Columba
(Columba-1.4)

jGit
(jGit-1.1.0)

Type Text	editor Email clients Distributed source	
version	control	system

Total	#	of revisions 19501 458 1616

Report	period 2001-09	~	2011-09 2006-07	~ 2011-07 2009-09 ~	2011-09

Number	of	developers 25 9 9

Class	# 952 1506 689

Method	# 6487 8745 5334

Attribute # 3523 3967 2989

27/ 38ⓒ KAIST SE LAB 2013

v Experimental design
§ To assess the capability of refactorings for maintainability

improvement, we use the change simulation
• Extract changes as input for change impact analysis

– Changed methods that had occurred within the examined
revisions of the development history

• Obtain propagated changes by performing change impact
analysis

§ We compare the reduced number of propagated changes
• approach using dynamic information only (dynamic)
• approach using static information only (static)
• combination of the two approaches (dynamic + static)

Effect of Dynamic Information

28/ 38ⓒ KAIST SE LAB 2013

v Results
§ Ex) Columba

Effect of Dynamic Information

Percentage of reduction for
propagated changes: 75 ~ 76%

Dynamic+Static Static Dynamic
9.09 7.10 7.67

• Average rate of reduction for propagated changes (%)

• Percentage of reduction for propagated changes (%)
Dynamic+Static Static Dynamic

100 78.1 84.4

29/ 38ⓒ KAIST SE LAB 2013

v Experimental design
§ Effect of multiple refactorings

§ Effect of RER

Effect of Multiple Refactorings

Rule-based_RC + MIS
(Our approach)

Approach considering RER
(Our approach)

Approach without considering
RER

Without MIS
(Rule-based_RC only)

Comparing 1) Fitness [Han’2013]; 2) # of iterations and Elapsed time (sec)

Comparing 1) Fitness [Han’2013]; 2) deviation between actual and expected maintainability

• Rule-based_RC: Approach of rule-based identification of refactoring candidates
• MIS: Approach of grouping into MISs

30/ 38ⓒ KAIST SE LAB 2013

v Results
§ Summary

Effect of Multiple Refactorings

• Rule-based_RC: Approach of rule-based identification of refactoring candidates
• MIS: Approach of grouping into MISs

• Rulebased_RCs only: approach without MISs
• Our approach: approach with Rulebased_RCs + MISs

0

50

100

150

200

250

jEdit Columba jGit

of iterations

Rulebased_RCs only Our approach

0

0.01

0.02

0.03

0.04

jEdit Columba jGit

Fitness

Rulebased_RCs only Our approach

0
100
200
300
400
500
600

jEdit Columba jGit

Elapsed Time (sec)

Rulebased_RCs only Our approach

31/ 38ⓒ KAIST SE LAB 2013

Effect of Multiple Refactorings

v Results
§ Ex) jGit

à In jGit, big refactoring
results in local optimum

During the iterative process,
it finds the refactoring
candidates in the same
place
à Selecting refactorings

globally helps to prevent
this problem

32/ 38ⓒ KAIST SE LAB 2013

v Results
§ Summary

Effect of RER

Subject Comparators Fitness fn. Accumulated deviation

jEdit
Not_RER 0.032379 9246

Our approach 0.033472 846

Columba
Not_RER 0.030720 40758

Our approach 0.037123 481

jGit
Not_RER 0.023602 13058

Our approach 0.028192 913

• Not_RER: approach without considering RER
• Our approach: approach considering RER
• Accumulated deviation

! 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅𝒊 	− 	𝑨𝒄𝒕𝒖𝒂𝒍𝒊 		
#	𝒐𝒇	𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝒊6𝟎

Expectedi: expected maintainability on i-th iteration
Actuali: actual maintainability on i-th iteration

33/ 38ⓒ KAIST SE LAB 2013

Related Work

34/ 38ⓒ KAIST SE LAB 2013

v Refactoring identification based on static metrics
[Tahvildari’2003; Zhao’2006]
§ The used metrics are all static
§ Neither clear rules for detecting design flaws nor a method of

how to apply refactorings
§ No quantitative method for evaluating the effect of

refactorings

Related Work (1/2)

35/ 38ⓒ KAIST SE LAB 2013

v Determining refactoring sequences to be applied by
selecting the best refactoring in a greedy way
[Tsantalis’2009; Han’2013]
§ Inefficient to select just one best refactoring for the iteration

of refactoring identification process

v Analysis of dependencies or conflicts between refactoring
candidates [Mens’2007; Hotta’2012]
§ Only considered syntactic dependency

Related Work (2/2)

36/ 38ⓒ KAIST SE LAB 2013

Conclusion and Future Work

37/ 38ⓒ KAIST SE LAB 2013

Conclusion

v Provide the methods for supporting systematic refactoring
identification
§ Develop the method for dynamic information-based

identification of refactoring candidates
§ Develop the method for RER-aware grouping entities of MIS

and selecting multiple refactorings

38/ 38ⓒ KAIST SE LAB 2013

Future Work

v We plan to consider more types of refactorings
§ For example, Pull Up Method refactoring and Form Template

Method refactoring

§ Our framework of refactorings’ effect evaluation
• Can support to easily extend considering refactorings to other

various type of refactorings
– Because it provides the method of assessment and impact

analysis of elementary refactorings
– The action of big refactoring comprises of elementary refactorings

ⓒ KAIST SE LAB 2013

40/ 38ⓒ KAIST SE LAB 2013

Reference (1/4)
v [Parnas’1994(ICSE)] D. Parnas, Software aging, in: Proceedings of The 16th International Conference on

Software Engineering (ICSE94), IEEE Computer Society Press, 1994. pp. 279–287.
v [Fowler’1999] M. Fowler, K. Beck, Refactoring: Improving the Design of Existing Code, Addison-Wesley

Professional, 1999.
v [Zarnekow’2005] Zarnekow R and Brenner W. 2005. 'Distribution of cost over the application lifecycle - A

multi-case study', Proceedings of the Thirteenth European Conference on Information Systems, Regensburg.
v [Robbes’2010] R. Robbes, D. Pollet, M. Lanza, Replaying ide interactions to evaluate and improve change

prediction approaches, in: 7th IEEE Working Conference on Mining Software Repositories (MSR), 2010,
IEEE, pp. 161–170.

v [Arisholm’2004] E. Arisholm, L. Briand, A. Føyen, Dynamic coupling measurement for object-oriented
software, IEEE Transactions on Software Engineering (2004) 491–506.

v [Han’2010] A.-R. Han, S.-U. Jeon, D.-H. Bae, J.-E. Hong, Measuring behavioral dependency for improving
change-proneness prediction in uml-based design models, The Journal of Systems & Software 83 (2010) 222–
234.

v [Han’2013] Ah-Rim Han, Doo-Hwan Bae, Dynamic profling-based approach to identifying cost-effective
refactorings, Information and Software Technology (IST), published on-line version (Dec. 2012).
(http://dx.doi.org/10.1016/j.infsof.2012.12.002)

v [Musa’1993] J. Musa, Operational profiles in software-reliability engineering,, IEEE Software 10 (1993) 14–
32.

v [Sharieh’2008] Ahmad Sharieh, Wagdi Al_Rawagepfeh, Mohammed H. Mahafzah, and Ayman Al Dahamsheh,
“An Algorithm for Finding Maximum Independent Set in a Graph”, European Journal of Scientific Research,
Vol.23, No.4 (2008), pp.586-596

41/ 38ⓒ KAIST SE LAB 2013

Reference (2/4)
v [Tahvildari‘2003(CSMR)] A metric-based approach to enhance design quality through meta-pattern

transformations, Proc. European Conf. Software Maintenance and Reeng.
v [Kerievsky'2005] Refactoring to patterns, Pearson Education.
v [Jeon'2002(APSEC)] An automated refactoring approach to design pattern-based program transformations in

java programs, IEEE Software Engineering Conference in Asia-Pacific.
v [Tsantalis'2009(TSE)] Identification of move method refactoring opportunities, Software Engineering, IEEE

Transactions.
v [Higo'2008(JSME)] A metric-based approach to identifying refactoring opportunities for merging code clones

in a java software system, Journal of Software Maintenance and Evolution: Research and Practice.
v [Lee'2011(SPE)] Automated scheduling for clone-based refactoring using a competent GA, Softw., Pract.

Exper.
v [Zibran'2011] Conflict-aware optimal scheduling of code clone refactoring: A constraint programming

approach, in: Program Comprehension (ICPC), 2011 IEEE 19th International Conference on, IEEE.
v [Harman'2011(ICSTW)] Refactoring as testability transformation, in: Software Testing, Verification and

Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on, IEEE.
v [Fagin’2003] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, in: Proceedings of the Fourteenth

Annual ACM–SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics,
2003, pp. 28–36.

v [Bonja’2006] C. Bonja, E. Kidanmariam, Metrics for class cohesion and similarity between methods, in:
Proceedings of the 44th Annual Southeast Regional Conference, 2006, pp. 91–95.

42/ 38ⓒ KAIST SE LAB 2013

Reference (3/4)
v [Tsantalis'2010(JSS)] A. Chatzigeorgiou, Identification of refactoring opportunities introducing polymorphism,

Journal of Systems and Software.
v [Simon'2001(CSMR)] Metrics based refactoring, in: Software Maintenance and Reengineering, 2001. Fifth

European Conference on, IEEE.
v [Seng'2006(GECCO)] Search-based determination of refactorings for improving the class structure of object-

oriented systems, Proceedings of the 8th annual conference on Genetic and evolutionary computation.
v [O’Keeffe'2008(JSS)] Search-based refactoring for software maintenance, The Journal of Systems & Software.
v [Tsantalis'2011(CSMR)] Ranking Refactoring Suggestions based on Historical Volatility, Software

Maintenance and Reengineering (CSMR), IEEE.
v [DuBois'2004(CRE)] Refactoring - improving coupling and cohesion of existing code, in: Proceedings of the

11th Working Conference on Reverse Engineering, IEEE Computer Society.
v [Liu'2008(IET)] Conflict-aware schedule of software refactorings, Software, IET.
v [Mens'2007(SoSyM)] Analysing refactoring dependencies using graph transformation, Software and Systems

Modeling.
v [Brooks‘2012] Metrics based Refactoring for cleaner code, http://www.grahambrooks.com/blog/metrics-based-

refactoring-for-cleaner-code/
v [Alon’1986] Noga Alon, L´aszl´o Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the

maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.
v [Johnson’1998] Johnson, David S and Yannakakis, Mihalis and Papadimitriou, Christos H, “On generating all

maximal independent sets”, Information Processing Letters, Vol. 27, No. 3, (1988), pp. 119—123
v [Luby’1986] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM

journal on computing, 15(4):1036–1053, 1986.

43/ 38ⓒ KAIST SE LAB 2013

Reference (4/4)
v [Hotta’2012] K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring, and suggesting form template

method refactoringopportunities with program dependence graph. In 16th European Conference on
Software Maintenance and Reengineering (CSMR’12), pages 53–62, 2012.

v [Zhao’2006] L. Zhao and J.H. Hayes. Predicting classes in need of refactoring: An application of
static metrics. In Proceedings of the workshop on predictive models of software engineering
(PROMISE), associated with ICSM2006, pages 1–5, 2006.

v [Henderson’1996] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity, Prentice-
Hall Inc., Upper Saddle River, NJ, USA, 1996.

