SAL 59 = 7

Ph. D. Dissertation

ARNAF AZEZ 8 2
BRI R RN

Identification and Selection of Refactorings

for Improving Maintainability of Object-Oriented Software

St o} & (& H #k Han, Ah-Rim)
A kst

Department of Computer Science

KAIST

2013

AR A F 2 ZEY 0] &
A E R A gl dE g o g A7

Identification and Selection of Refactorings

for Improving Maintainability of Object-Oriented Software

Identification and Selection of Refactorings
for Improving Maintainability of Object-Oriented

Software
Advisor : Professor Bae, Doo-Hwan

by
Han, Ah-Rim
Department of Computer Science
KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy in the Department of Com-

puter Science . The study was conducted in accordance with Code of Research
Ethics'.

2013. 5. 8.
Approved by
Professor Bae, Doo-Hwan

[Advisor]

WNE

‘Decleranon of Ethical Conduct in Research: 1, as a graduate student of KAIST, hereby declare that I have
not cormrmutied 3oy acts that may damage the credibility of my research. These include, but are not limited to:
falsificacn. thess wnitten by someone else. distortion of research findings or plagiarism. 1 affirm that my thesis
comtams homest conclusions based on my own careful research under the guidance of my thesis advisor.

9 rre B2 & A EEOR
SEREMPREEEERRRE ST

2013 59 8¢

SREEE

SRR

A
AAH A

ZREE

DCS St Ot &l. Han, Ah-Rim. Identification and Selection of Refactorings
for Improving Maintainability of Object-Oriented Software . ZHX|X| &k AT EQ|0{2]
20075196 FRIEsY gdE flo 2|HEY AE 2 ME -0l thet 2151, Department of
Computer Science . 2013. [69p. Advisor Prof. Bae, Doo-Hwan. Text in English.

ABSTRACT

Object-oriented software undergoes continuous changes with various maintenance activities. Due to the
changes, the design quality of the software degrades overtime. Thus, refactoring can serve to restructure the
design of object-oriented software without altering its external behavior to improve maintainability, which in turn
reduces maintenance costs and shortens time-to-market.

In the thesis, we provide the methods for supporting systematic refactoring identification: refactoring candi-
date identification and refactoring selection. For identifying refactoring candidates, we use top-down and bottom-
up approaches. First, for the top-down approach—a traditional way of finding refactoring opportunities by using
heuristic rules for eliminating violations of design principles in object-oriented software systems—, we establish
the rules to identity the refactoring candidates with the aim of reducing dependencies of entities for methods and
classes. When establishing the rules, we are motivated by the studies that dynamic information—how the system
is utilized—is an important factor for estimating changes. Therefore, to perform refactorings that effectively im-
prove maintainability, the entities are found based on how the users utilize the software (e.g., user scenario and
operational profile); and within these entities, refactoring candidates are identified. Second, for the bottom-up
approach—the way of finding refactoring opportunities without pre-defined patterns or rules—, we develop the
method for grouping entities—methods and attributes—by using the concept of the maximal independent set in
graph theory. When grouping entities, we take into account the new dependency of refactorings—refactoring ef-
fect dependency on maintainability—as well as the syntactic dependency of refactorings. The entities involved in
each maximal independent set are mapped into a group of elementary refactorings and these refactorings can be
applied at the same time. For selecting refactorings to be applied, we provide the method of selecting of multiple
refactorings by supporting assessment and impact analysis of elementary refactorings. We develop the refac-
toring effect evaluation framework for assessing each elementary refactoring effect on maintainability based on
matrix computation. Using the evaluation framework, we select the group of refactorings containing the multiple
elementary refactorings that best improves maintainability.

We evaluate our proposed approach in three open-source projects—jEdit, Columba, and JGIT. From the ex-
perimental results, we conclude that dynamic information is helpful in identifying refactorings that efficiently im-
prove maintainability, because dynamic information is helpful for extracting refactoring candidates in frequently
changed classes. Furthermore, the refactoring identification using multiple refactorings selects refactorings that
lead the software design to reach higher fitness function values (better improve maintainability) with smaller costs
(i.e., smaller search space exploration cost and shorter time). In addition, the refactoring effect dependency is

essential to be considered for correctly selecting a group of refactorings that most improve maintainability.

Contents

(Chapter 1. Introduction |

[Chapter 2. Related work |

2.1 Refactoring Candidate Identification Using Static Metric Based Heuristic

I Rules0 v i i i ittt i i e e e e e e e e e e e e e
2.2 Determining Refactoring Sequences to be Applied|

2.3 Analysis of Dependencies/Conflicts between Refactoring Candidates|

(Chapter 3. Overview of Our Approach |

(Chapter 4. Identification of Refactoring Candidates |
4.1 Top-Down Approach: Extracted with Heuristic Rules|

4.1.1 Dynamic Information-based Identification of Refactoring Candi-

dates| i it e e e e et e e e et e e e e e e
4.1.2 Refactoring Candidate ExtractionRules|
[4.2 Bottom-Up Approach: Grouping Entities into Maximal Independent Sets| .
[4.2.1 Refactoring Effect Dependency (RED) on Maintainability|
4.2.2 Algorithm of RED-aware Grouping: Maximal Independent Set
| (MIS) Calculation] 0 0 ittt it ittt eeenn

[Chapter 5. Selection of Refactorings to be Applied |

[5.1 Calculation for Each of Elementary Refactoring’s Effect on Maintainabil-

| ity: Refactoring Effect Evaluation Framework|

[5.2 Refactoring Impact Analysis|
[5.3 Selection of Multiple Refactorings|

[Chapter 6. Tool Implementation |

(Chapter 7. Evaluation |

(7.1 Research Questions| ¢ . v i i i i i it i ittt ot et e

(7.2 Subjects and DataProcessing|.,

35

A Resulfs]ottt ittt it ettt ettt 47
[7.4.1 Dynamic Information-based Identification of Refactoring Candi- |

dates]t e 47

(7.4.2 RED-aware Grouping of Multiple Elementary Refactorings] 52

[75 Threatsto Valldify] ¢ ¢ v v v v v i i e e e e e e e e et e et e e e e 54
(Chapter 8. Discussion | 59
[Chapter 9. Conclusion and Future Work | 61
(9.1 Summaryof Contributions|, 61
9.2 Future Work| i i it e e e 62
[References | 63
nend 69

|IChapter A. Behavioral Dependency Measure as a Good Indicator for Change- |

| Proneness Prediction [39] | 70
(A.1 Behavioral Dependency Measure|. 0. 70
(A.2 Procedure for Behavior Dependency Measure Measurement, 74
[A.3 Change-Proneness Modeling| 79
[Add CaseStudy| . . . o o v v i v i i i it e e e e e e e e e et e e 80

[Summary (in Korean)| 89

—iii -

List of Tables

[3.1 Identified three phases by referencing refactoring process in [65].f. 8
4.1 Difference between the static method call (SMC) and the dynamic method call (DMC)| 14
7.1 Characteristics and development history for each subject.| 38
[7.2 Measures of each subject.|. 38
[7.3 Examined range of reviSIOns.| L e 40
[7.4 Fitness function values of the original design.| 47

[7.5 Indicators of cost-effective refactorings: (1) Percentage of reduction for propagated changes, (2) |

Rate of reduction for propagated changes for jEdit, Columba, and JGIT.| 49

7.6 Commonly found classes between the real changed classes and the extracted classes as refactoring |

candidates for each approach using static information and approach using dynamic information.| . 51

[7.7 Top k ranking distance measures (K: Kendall’s tau; F: Spearman’s footrule [27]]) between the real |

changed classes and the extracted classes as refactoring candidates for each approach using static |

information and approach using dynamic information.|. 0oL 51
[7.8 Results of the effect of multiple refactorings.|. 52
Results of the effi fthe REDJ oo 53

[A.1 RPS(0;,05), which is a set of all the reachable paths for each pair of objects (Row: 0;, Column: |

OD I EIE RSN - - - o o o e e e e 78

A2 SumW RP(G,Ci), which 1s the sum of the weighted reachable paths for each pair of classes (Row: |

Ci, Column: Cj) and the BDM (C;) value of each class in Fig. [A3(b)}| 79
|IA.3 The number of ground facts regarding 13 subsequent versions of JFlex (versions 1.3 to 1.4.3).] . . 80
|A.4" The analysis-of-vartance (ANOVA) table that includes the results for each clustering variable| . . . 83
|A.S Descriptive statistics with respect to the four attributes for Group 1 (294 instances)| 83
|IA.6 Descriptive statistics with respect to the four attributes for Group 2 (84 instances).|. 84
|A.7 Prediction model using existing metricsinGroup I.| oL oL 85
|IA.8 Prediction model using existing metrics and BOM in Group 1.| 86

IA.9 Group 2 prediction model (The result 1s same whether the BDM 1s used or not because the BDM |

isnotincluded inthemodel).| o 86

v

List of Figures

[T.T Cost distribution in software lifecycle [91] 2
3.1 A proposed framework for systematic refactoring identification.| 9
3.2 Overall procedure of our approach.|. L 10

4.1 Overall approach of the top-down approach: extracted with the dynamic information based heuris- |

ticrules) oL 11
4.2 Procedure for dynamic profiling.| oL oL o 13
4.3 A metamodel of the AOMusedinthisthesis| 15
4.4 Overall approach of the bottom-up approach: grouping entities into MISs.| 21
4.5 A motivating example of showing the need of the RED on maintainability.|. 22

4.6 A sequential algorithm of calculating a MIS. This 1s reference from the lecture note of Costas |

Busch [I7].] o o o e 24
4.7 The algorithm for calculating MISs.| oo 26
[5.1 Overall approach of the selection of multiple refactorings.|. 27
5.2 The algorithm for dertving adeltatable] 0oL 30
[5.3 Example of calculating the delta table (D) of Fig. [4.5(c)[for the design of Fig. B5(@l 33
[5.4 Matrices matrices required to calculate the delta table (Fig. 4.5(c)).|. 34
6.1 Overall tool architecture] 35
6.2 A snapshot of tool operation.| L 36

[7.1 ~ Change distribution graph (X-axis: f§ of occurred changes for each class, Y-axis: § of correspond-

g classes)| e e e 43
[7.2 Maintainability evaluation function for producing fitnessvalue|. 45
[7.3 Change simulation forjEdit.| 56
[7.4 Change simulation for Columba.| 56
[7.5 Change simulation for JGIT,| 56
7.6 The effect of multiple refactorings.| 57
7.7 The effect of multiple refactorings on the number of iterations.| 58
IA.1 Examples of Sequence Diagrams (SDs)| o oo oo oo 70

IA.2 An example of using inheritance relationships and polymorphism: (a) A class diagram repre- |
senting classes and their relationships. (b) SDs representing the behaviors of objects that are |
instantiated from the classes in|A2()l e 72

|A.3 (a) An example of the Interaction Overview Diagram (IOD). (b) An example of the class diagram |
that has classes from which the objects, 1n the SDs 1n Fig. |A.1|are instantiated.|. 72

|A.4 Overview of our approach of BDM measurement| 74

IA.5 (a) OBDM 4 and OBDMp correspond to SD sd A and SD sd B in Fig. [A.1] (b) The obtained |
OSBDM by synthesizing the two OBDMsin (a).| 76

IA.6 An SD that was reverse-engineered from source codes of JFlex version 1.3 82

|IA.7 A validation procedure followed during in thiscase study| 82

Vi

Chapter 1. Introduction

Object-oriented software undergoes continuous changes with various maintenance activities such as addition
of new functionalities, correction of bugs, improvement of performance, and adaptation to new environments.
Several empirical studies [62} |67, 90] have shown that the cost for maintenance and rework is biggest portion
of the cost of total software life cycle. In [91], they conducted the case study by analyzing the cost of software
development cost collected from three major European companies. Figure[I.T|shows the cost distribution across
the software life cycle based on a projected total production time of five years. Only those application systems for
which complete cost data was collected were included. For a total production time of five years, the percentage of
non-recurring costs amounts on average to 21% of the total life cycle costs. Therefore, 79% of the total costs are
recurring costs (i.e., maintenance and rework costs). This implies that to reduce the cost of software development,
it is important to reduce the maintenance cost.

The main factor affecting the maintenance cost is the design quality of software [63. (75, 31]. However, since
the changes often take place without consideration of the software’s overall structure and design rationale due to
time constraints, the design quality of the software may degrade overtime. This phenomenon is known as software
aging [[12]] or software decay [29]. Thus, refactoring can serve to restructure the design of object-oriented software
without altering its external behavior [29] to improve maintainability (or to make software accommodate changes
more easily), which in turn reduces maintenance costs and shortens time-to-market.

Much of the existing research on automated refactoring focuses on refactoring application [78, 25} 180} |51}
9l], that is, applying refactorings on actual source codes. Several studies have attempted to support refactoring
identification. For instance, to support each activity of the refactoring process, (1) algorithms are developed to find
refactoring candidates with the opportunities of applying design patterns [35, 121} [SO], removing code clones [S6}
451,193 146]], and improving code quality such as testability [42], as well as maintainability. (2) For evaluating the
design of the refactored code, design quality evaluation models such as QMOOD [56]] and Maintainability Index
(MD) [69], or a special metric such as historical volatility [89], are used. Distance measures [83, 88] or weighted
sums of metrics [82] also have been used as evaluation functions (i.e., fitness functions); pareto optimality has
been used to compare different fitness functions and to combine results from different fitness functions [43]]. (3)
The methods for scheduling of refactoring candidates also have been studied 58, 64] to achieve the greatest effect
of maintainability improvement. In an attempt to provide the method for automated refactoring, the literature
has proposed methods of refactoring identification by using several search techniques. O’Keeffe et al. [68]
treat object-oriented design as an optimization problem and employ several search techniques such as multiple
ascent hill-climbing, simulated annealing, and genetic algorithms to automate the refactoring process. They do
not provide where to apply which refactorings because extraction of refactoring candidates depends on random

choices. In the other aspect of refactoring automation, Steimann et al. [85] propose a concept of a framework for

_1-

Application 30 J 62
Application 27 | 8
Application 25 | 76
Application 24 | 77
Application 23 | 65
Application 22 | 78
Application 21 | 65
Application 20 | 79
Application 19 | 093
Application 18 | 96,
Application 12 | 9
Application 10 | 60)

Application 9 Ao~ 91

Application 8] L

Application 6 |-t Ll 89

Application 4 | 8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O Percentage of non-recurring cost (planning and initial development)

B Percentage of recurring cost (production and further dewelopment)

Figure 1.1: Cost distribution in software lifecycle [91].

specifying refactorings in an ad-hoc fashion. They argue that in practice concrete refactoring needs may deviate
from what has been distilled as a named refactoring, and mapping these needs to a series of such refactorings is
worth to be developed. However, we still lack systematic approaches, clear guides, and automated tool support

for identifying where to apply which refactorings and in what order.

Goal and Approach

In the thesis, we provide the methods for supporting systematic refactoring identification: identification of
refactoring candidates and selection of refactorings to be applied. For each iteration of the refactoring identifica-
tion process, multiple elementary refactorings that most improve maintainability are produced. The procedure of
refactoring identification process is iterated until no more group of refactoring candidates for improving maintain-
ability are found.

For identification of refactoring candidates, we attempt top-down and bottom-up approaches. First, for the
top-down approach—traditional way of finding refactoring opportunities by using heuristic rules for eliminat-
ing violations of design principles (e.g., removing bad smells) in object-oriented software systems—we establish
the rules to extract the refactoring candidates with the aim of reducing dependencies of entities of methods and
classes. When establishing the rules, we are motivated by our previous studies [39]] (see in Appendix A.) that have
shown that the data capturing how the system is utilized is an important factor for estimating changes; (1) program

usage data recorded from Integrated Development Environments (IDEs) significantly improves the accuracy of

change prediction approaches [[77, [76] and (2) dynamic coupling measures [3] and behavioral dependency mea-
sures [39]—that are obtainable during run-time execution and pinpoint the systems’ parts that are often used—are
good indicators for predicting change-prone classes. As a result, we have come to argue that if changes are more
prone to occur in the pieces of codes that users more often utilize, then investing efforts on the refactorings in-
volving such codes may effectively improve maintainability. Therefore, entities are identified based on how the
users utilize the software (e.g., user scenario and operational profile [66]); and within these entities, refactoring
candidates are identified. Second, for the bottom-up approach—identification of refactoring opportunities without
humans’ insights [85]—we develop the method for grouping entities (i.e., methods and attributes) into maximal
independent sets (MISs). Different from the previous approaches for refactoring candidate identification, we at-
tempt to grouping elementary refactorings (i.e., Move Method refactorings) without pre-defined patterns. The
methods involved in each MIS are transformed into a group of elementary refactorings—in this thesis, Move
Method refactorings. Each of the group has elementary refactorings that can be applied at the same time. The
concept of the MIS is from graph theory. We select the group of refactorings containing the multiple elementary
refactorings that best improves maintainability. When calculating MISs, we take into account the new dependency
of refactorings—called refactoring effect dependency (RED). The RED is essential to be considered when select-
ing refactorings even though refactorings are not syntactically dependent—syntactic dependency of refactorings
indicates that the application of one refactoring changes or deletes elements necessary for the other refactorings
thus it disables those refactorings.

For selecting refactorings to be applied, we provide the method of selecting refactorings by supporting as-
sessment and impact analysis of elementary refactorings. We have developed the refactoring effect evaluation
framework (i.e., delta table. Each cell of the delta table indicates delta of maintainability after the application of
each elementary refactoring on the current design configuration. This delta table is used for refactoring selection
criteria. The matrix computation is used for calculating each of elementary refactoring’s effect on maintainability.
The matrix computation is fast, thus it provides efficient computation for deriving the delta table. It is important
that the method of elementary-level refactoring computation enables selecting multiple refactorings. Note that the
previous studies of exhaustive and greedy way of refactoring selection suffer from the need of too much space
exploration cost due to many possible sequences to be evaluated and the inefficiency in selecting just one best
refactoring for the iteration of refactoring identification process, respectively. Furthermore, this method supports
to extend considering refactorings to other various type of refactorings; because the action of big refactoring (e.g.,
Collapse Hierarchy Class refactoring) comprises of elementary refactorings (e.g., Move Method refactorings). The
procedure of refactoring selection consists of the several activities: (1) calculation for each of elementary refactor-
ing’s effect on maintainability, (2) checking whether there are duplicated elementary refactorings (i.e., syntactic
dependencies) or the RED among refactorings—that are identified as refactoring candidates from top-down and
bottom-up approaches—, (3) finding multiple (elementary) refactorings—that can be applied at a same time—
containing refactorings that most improve maintainability, and (4) identification of the impacted refactorings after

applying selected refactorings and recalculation of the changed values for those impacted refactorings.

3

We evaluate our proposed approach in three open-source projects—jEdit [49], Columba [20], and JGIT [52].
From the experimental results, we conclude that dynamic information is helpful in identifying refactorings that ef-
ficiently improve maintainability; because dynamic information is helpful for extracting refactoring candidates in
frequently changed classes. Therefore, considering dynamic information in addition to static information provides
more opportunities in identifying refactorings that efficiently improve maintainability because of the refactoring
candidates that are uniquely identified by the approach using dynamic information only. Furthermore, the experi-
mental results show that the refactoring identification using multiple refactorings selects refactorings that lead the
software design to reach higher fitness function values (better improve maintainability) with smaller costs (i.e.,
smaller search space exploration cost and shorter time). In addition, the RED should be considered when selecting

multiple refactorings.

Organization

The thesis is organized as follows. Chapter [2] contains a discussion of related studies. Chapter [3] explains
the framework for systematic refactoring identification and the overview of our proposed approach for refactoring
identification. Chapter @] explains the methods of identification of refactoring candidates in terms of the top-
down and bottom-up approaches. Then, Chapter [5] explains the detailed procedure and the method of selection
of refactorings to be applied. Chapter [6] covers the implemented tool for applying our proposed approach. In
Chapter [7] and Chapter [8] we present the experiments performed to evaluate the proposed approach and discuss

the obtained results, respectively. Finally, we conclude and discuss future research in Chapter[9]

Chapter 2. Related work

In the following sections, we present representative studies of refactoring identification; note that we divide

the categories of related work in the aspect of the comparison with our approach.

2.1 Refactoring Candidate Identification Using Static Metric Based Heuris-

tic Rules

Several studies have attempted to support for identifying refactorings using metrics as a means of detecting
refactoring candidates or evaluating refactoring effects [24} 183115411861 92]]. Tahvildari et al. [86] propose a metric-
based method for detecting design flaws and analyzing the impact of the chosen meta-pattern transformations
for improving maintainability. They detect design flaws based on pre-defined quality design heuristics using
object-oriented metrics of complexity, coupling, and cohesion metrics. However, the authors do not provide a
systematic approach for applying given meta-pattern transformations; they offer neither clear rules for detecting
design flaws nor a method of how to apply meta-pattern transformations. This process still requires much human
interpretation and judgment. Moreover, the effect of certain given meta-pattern transformations are evaluated on
object-oriented metrics as positive and negative. Since a quantitative method for evaluating the effect of meta-
pattern transformations is not available, the approach cannot determine a sequence to be applied first among the
multiple potential meta-pattern transformations. Bart Du Bois et al. [24] provide a table representing the analysis
of the impact of certain refactorings, which redistribute responsibilities either within the class or between classes,
on cohesion and coupling metrics. In the manner of Tahvildari’s work [86]], the authors specify the impact of
refactorings as ranges of best to worst cases as positive (i.e., improvement), negative (i.e., deterioration), and zero
(i.e., neutral); it also lacks a means of quantitative refactoring-effect evaluation, which is essential for making a
decision on which refactorings should be applied first. Simon et al. [83]] provide a software-visualization approach
using a distance-based cohesion metric to support developers for choosing appropriate refactorings; the parts with
lower distances are cohesive whereas parts with higher distances are less cohesive. However, decisions for which
refactorings should be performed and how to apply those refactorings are still heavily dependent on developers, as
the authors admit that they presume that the developer is the last authority in identifying and applying refactorings.
In the above-mentioned studies, the metrics are obtained using statically profiled information from source codes,
in other words, without executing a program, which might suggest refactorings on parts of software that is not
really in use. Furthermore, as pointed out above, they provide neither exact algorithms guiding where to apply
which refactorings nor a quantitative evaluation method, which are essential for selecting better refactoring.

Research has looked at providing a tool support and systematic methodology to assist developers in making

decisions as to where to apply which refactoring. Tsantalis et al. [88] propose a methodology and constructed

a tool for the identification of Move Method refactoring opportunities that solve Feature Envy bad smells. They
extract a list of behavior-preserving refactorings based on a distance-based measure that employs the notion of
distance between system entities (i.e., methods and attributes) and classes. This concept of distance for measuring
lack-of-cohesion is also used in [83]. The authors also defined an Entity Placement metric, also based on the
concept of distance and used as a means of quantitative refactoring-effect evaluation. However, in their experiment,
they show the performance of refactoring opportunities by measuring the effect of refactored designs only on

coupling and cohesion metrics and some qualitative analysis.

2.2 Determining Refactoring Sequences to be Applied
Selection Strategy: Exhaustive or Greedy

It is difficult to schedule refactorings by considering the issues of refactoring dependencies or newly created
refactoring candidates. Theoretically, when the number of available refactoring candidates is m and the number
of the selecting refactorings is n and assuming that there are no repetitions of refactoring candidates, the number
of the refactoring schedules that need to be examined is n-permutations of m that can be formulated by m!/(m-
n)!. As the number of refactoring candidates increases, the number of possible refactoring schedules increases
exponentially. Therefore, scheduling refactorings by investigating all possible orders may become NP-hard.

For selecting refactoring candidates, in the studies [88} 128, 38]], they the single refactoring that best improves
the current design of software is selected in a stepwise (i.e., greedy) way after extracting and assessing refactoring
candidates. Then, the selected refactoring is applied, and the refactoring identification process is iterated until no
more refactorings that can improve maintainability are found. Finally, the sequence of refactorings is generated
by logging the results of the selected refactoring for each refactoring identification process. This selection method
offers the advantage of taking the change of system; thus, newly created refactoring candidates can be considered.
In addition, by extracting and assessing refactoring candidates again after applying the selected refactoring, refac-
toring dependencies do not need to be considered. However, it is inefficient to select just the single best refactoring
for each refactoring identification process. The costs (e.g., search space exploration cost and computation cost) of
extracting and assessing refactoring candidates are high.

To address the limitation, we provide an automated method for selecting multiple refactorings that can be

applied at the same time.

Search Space Reduction

The methods of narrowing the refactoring sequences to those that are semantically sound and avoiding se-
quences leading to the same results have been also studied. Piveta et al. [[73] propose an approach to narrow the
number of refactoring sequences by discarding those that semantically does not make sense and avoiding those
that lead to the same results. They also provide a detailed example of the approach considering sequences for

method manipulation, showing how the number of sequences can be significantly reduced.

Refactoring Scheduling: Finding an Optimal Sequence of Refactoring Applications using Search Tech-

niques

In studies of search-based refactoring, they try to find an optimal sequence of refactoring applications using
search techniques. Lee et al. [56] and Seng et al. [82] use genetic algorithms to produce a sequence of refactor-
ings to apply to reach an optimal system in terms of the employed fitness function. However, [82]] do not take into
account that the application of a refactoring may create new refactoring candidates not originally present in the
initial system. Moreover, some of the produced sequences of refactorings using the search-based approach may
not be feasible to be applied because of dependencies among refactoring candidates; applying one refactoring
may conflict with the application of other refactorings. The scheduling approaches using the Genetic Algorithm
(GA) do not perform feasibility checking of generated sequence of refactorings and they would require additional
cost of repairing. Lee et al. [S6]] try to resolve the refactoring-conflict problem by repairing infeasible sequences
of refactorings, but it seems time-consuming to reorder the randomly generated sequence of refactorings without
considering refactoring conflict. As a consequences, for considering newly generated, deleted and changed refac-
toring candidates, the studies of refactoring scheduling using search techniques would require much of search
exploration cost due to too many possible sequences of refactorings to be evaluated. Therefore, in our approach,

we attempt to select a group of refactorings that can be applied at a same time.

2.3 Analysis of Dependencies/Conflicts between Refactoring Candidates

When selecting refactorings, as mentioned briefly in the previous section, syntactic dependency (i.e., con-
flicts) of refactorings should be considered. The syntactic dependency of refactorings indicates that if the ap-
plication of one refactoring changes or deletes elements necessary for the other refactorings, thus disable those
refactorings. Therefore, many research efforts have been invested in resolving conflicts of the extracted refactor-
ings and applying as many refactorings as possible for improving maintainability of software.

Tom Mens et al. [64] represent refactorings as graph transformations; and they propose the techniques of
critical pair analysis and sequential dependency analysis to detect the dependencies between refactorings. Using
the results of this analysis can help the developer to make an informed decision of which refactoring is most
suitable in a given context and why. In the very similar manner, Fawad Qayum et al. [74] represent the system by a
graph model and refactoring steps as graph transformation rules. Then, dependency information (which is derived
from the analysis of graph transformation) is used for expressing the problem as an instance of the optimisation
problem. Zibran et al. [93]] notice the importance of considering the syntactic dependency of refactorings. They
argue that the application of a subset of refactoring from a set of applicable refactoring activities may result in
distinguishable impact on the overall code quality; moreover, there may be sequential dependencies and conflicts
among the refactoring activities. Hence, they insist that it is necessary that, from all refactoring candidates a subset
of non-conflicting refactoring activities be selected and ordered (for application) such that the quality of the code

base is maximized while the required effort is minimized.

Chapter 3. Overview of Our Approach

Framework for Systematic Refactoring Identification
According to [65]], the refactoring process consists of the following distinct activities.
1. Identify places where the software should be refactored.
2. Determine which refactoring(s) should be applied.
3. Guarantee that the applied refactoring preserves behavior.
4. Apply the refactoring.
5. Assess the effect of the refactoring on quality characteristics of the software.

6. Maintain the consistency between the refactored program code and other software artifacts such as docu-

mentation, design documents, and test cases, etc.

Based on this process, we categorize the activities of the refactoring process into three phases (Table[3.T)).

Table 3.1: Identified three phases by referencing refactoring process in [63].

Phase Description

Refactoring Identification Determination where to apply which refactorings in what order

Refactoring Application Actual modification on source code

Refactoring Maintenance Testing the refactored code, consistency checking with other
software artifacts, and change management

”Refactoring-identification phase” refers to planning to determine where to apply which refactorings or how
to apply the refactorings for meeting the goal of refactoring, such as improvement of maintainability, under-
standability, and testability. “Refactoring-application phase” refers to the task of applying planned refactorings
on actual source codes. “Refactoring-maintenance phase” refers to three activities: testing the refactored code,
checking consistency with other software artifacts such as requirement documents or Unified Modeling Language
(UML) models, and change management. The refactoring is one kind of code change; therefore, in the change
management activity, tasks for recording change logs and change owners—who are responsible for making those
changes—for applying each refactoring are needed.

In the thesis, we focus on refactoring identification. To enable automated refactoring, we propose a frame-
work for systematic refactoring identification—the activities of refactoring candidate identification, refactoring

candidate assessment, and refactoring selection—(as in Fig. 3.1). In Chapter[d]and Chapter [} we will explain the

_8—

o —

-3
Refactoring Candidates .ﬁ

Source code -
Fit. Func. 1

=] o | %,

—
o | ©

ol |2,
#*

7
Fit. Func. 2 8 7

Application | < #ﬁ @@ 4_‘:%01\#

Selected Refactorings

LH

Figure 3.1: A proposed framework for systematic refactoring identification.

detailed methods of the proposed approach for refactoring identification.

Overall Procedure of Our Approach

Fig. [3.2) shows an overview of our proposed approach for refactoring identification. The following briefly
describes a procedure of the proposed refactoring identification method. The input of refactoring identification
is the source code of program. Refactoring identification consists of two main activities: refactoring-candidate
identification and refactoring selection. In the refactoring candidate identification activity, refactoring candidates
are (1) extracted using the dynamic information based rules, and (2) grouped into the MISs considering the RED.
In the refactoring selection activity, we have developed the refactoring effect evaluation framework (i.e., delta
table) for assessing each elementary refactoring effect on maintainability based on matrix computation. Each
group of refactorings are sorted in the order of expected degree of improvement on maintainability by using the
delta table. The group of refactorings containing the multiple refactorings that best improves maintainability is
selected and applied; and the delta table is recalculated. The refactoring selection process (i.e., the procedure
of selection for multiple refactorings) is iterated until no more refactorings that can improve maintainability are
found. The output is the groups of elementary refactorings, which are the logged results obtained from each
refactoring selection process. The next section will explain the detailed procedure and methods of the refactoring-

candidate identification and refactoring selection.

* RED: Refactoring Effect Dependency

[Source Code of Object-Oriented Program]
v

I. Refactoring Candidate Identification

[Extracting with Dynamic Information] [RED-aware Grouping into Maximal]

based Rules Independent Sets
1
- Vv
[Refactoring Candidates
v
Il. Refactoring Selection
Refactoring Effect Assessing the Effect Selecting Multiple
Evaluation Framework of Refactorings Refactorings

!

[Selected Multiple Refactorings]

. No Improvemen

Figure 3.2: Overall procedure of our approach.

Apply Selected
Refactorings

~10-

Chapter 4. Identification of Refactoring Candidates

4.1 Top-Down Approach: Extracted with Heuristic Rules

Operational profile or Object-oriented
User scenarios source code

v
[Dynamic dependency] [Static dependency]
| |

Profiled model]

= ! \

)

_/ > Extracting refactoring candidates
Refactoring \ J
candidate
extraction (((vV \
rules Collapse Class Hierarchy and
N L Move Method refactorings)

Figure 4.1: Overall approach of the top-down approach: extracted with the dynamic information based heuristic

rules.

The Fig. @.T]illustrates the procedure for the approach of the top-down approach—extracted with the dynamic

information based heuristic rules.

4.1.1 Dynamic Information-based Identification of Refactoring Candidates

Refactoring candidates are extracted with the aim of reducing dependencies of entities of methods and classes,
since the goal of the refactoring in our approach is to make software accommodate changes more easily. By moti-
vated by the studies—the data capturing how the system is utilized is an important factor for estimating changes—,
we use dynamic information of how the users utilize the software for identifying the entities involved in given
user scenarios and operational profile [[66]; and within these entities, refactoring candidates are extracted. Regard-
ing dynamic information, we use dynamic profiling technique to obtain the dynamic dependencies of entities—
Dynamic Method Calls (DMCs)—based on dynamic method calls by executing programs based on user scenarios
or operational profiles; and we specifically designed the profiled model, Abstract Object Model (AOM), for saving

the dynamically and statically profiled information.

—11-=

Change Preventing Related Design Problems and Resolving Refactorings

Dependency refers to a relationship where the structure or behavior of an entity is dependent on another
entity [2]. UML defines dependency as a relationship where a change to the influent modeling element may
affect the dependent modeling element [70]. Object-oriented software involves structural and behavioral aspects
of dependencies [32]. The relationships in classes such as association, aggregation, composition, and inheritance
represent structural dependencies. Behavioral dependency occurs when a method calls another method (i.e., when
a method requires a service from another method to execute its own behavior); in this case, the methods or
the owner classes of those methods have behavioral dependencies. In our approach, we consider a behavioral
dependency that occurs due to a method call. Note that structural and behavioral dependencies are not mutually
exclusive; an entity can have both structural and behavioral dependencies on another entity [32]]. For example, a
"use” type of association relationship for structural dependency entails behavioral dependency. High dependency
between entities makes change-sensitive software in that many classes are modified when making a single change
to a system (e.g., Shotgun Surgery [29]), or a single class is modified by many different types of changes (e.g.,
Divergent Change [29]). This makes software difficult to maintain, and, thereby, lowers the overall maintainability
level. The kinds of situations mentioned above should be resolved. Therefore, refactorings should be applied in a
way that reduces dependencies of entities (i.e., methods and classes), resulting in software accommodate changes
more easily.

Fowler [29] suggests considerable refactorings for resolving the change preventing related bad smells—
Divergent Change and Shotgun Surgery—as follows: Inline Class (i.e., merging class; in our approach, Collapse
Class Hierarchy), Move Method, Move Field, and Extract Class, etc. Among the mentioned refactorings, we
currently support two refactorings: Collapse Class Hierarchy and Move Method. In a Collapse Class Hierarchy
refactoring, all methods and fields contained in a class are moved into another class; subsequently, the moved
class is deleted. In a Move Method refactoring, a method is moved into a target class. We do not consider Move
Field refactoring—moving attributes (i.e., fields) from one class to another class—, because fields have stronger
conceptual binding to the classes in which they are initially placed since they are less likely than methods to change
once assigned to a class [88]]. For Extract Class refactoring, our rule-based approach has difficulty in determining

specific code blocks to be split in an automated way; therefore, we leave this refactoring for future work.

Use of Dynamic Information to Find Refactoring Candidates in Change-Prone Parts

Previous studies have shown that the data capturing how the system is utilized is an important factor for es-
timating changes. Robbes et al. [77] show that using program usage data recorded from Integrated Development
Environments (IDEs) significantly improves the overall accuracy of change prediction approaches. The exper-
imental results of the other study [3]] and our study [39]] show that dynamic coupling measures and behavioral
dependency measures— that are obtainable during run-time execution and pinpoint the systems’ parts that are
often used—are good indicators for predicting change-prone classes.

Being motivated by these works, we have come to argue that if changes are more prone to occur in the pieces

—12 =

of codes that users more often utilize, then applying refactorings in these parts would fast improve maintainability
of software. The underlying assumption is that the pieces of codes that have been used more are more likely to
undergo changes in a future version; therefore, investing efforts on the refactorings involving such codes may
effectively improve maintainability. By using only static information (i.e., that can be obtained by analyzing
source codes statically without running a program) such as structural complexity of the program, refactorings may
be suggested on rarely, or, even worse, never-used entities. If changes have never occurred in such entities, then
the benefit—for example, reduced maintenance cost for accommodating the changes—of the application of those

refactorings may be little to none. In this case, refactorings need to be applied on the other entities.

Dependencies of Entities Based on Dynamic Method Calls (DMCs)

The procedure of dynamic profiling technique used in our approach is presented; and the definition and

measurement of the DMC is provided. At last, the profiled model use in our approach is explained.

()

Java Compiler Java VM

Class Loading Executing

Java Instrumentation Inserted logging
source Compiling driver codes
code Insert logging]]
Loggin
[codes 099Ing
\ _J
. (.
o Compiled <] Instrumented N Dynamic
"l byte code "l bytecode | | method calls |
void methodA(Type param, ...) || void methodA(Type param, ...) || ...
{ { enter methodA
log(“enter methodA”);
c.methodB(); enter methodB
COde level c.methodB();
view return ret; exit methodB
} log(“exit methodA”);
return ret; exit methodA
}

Figure 4.2: Procedure for dynamic profiling.

Dynamic profiling. Dynamic profiling is a form of dynamic program analysis that measures, for example, the
use of memory, the use of particular instructions, or frequency or duration of method calls; it is achieved by
instrumenting either the program source code or its binary executable form. Dynamic profiling has been used
by many researchers [47, 16} |84]. The most common use of dynamically-profiled information is to aid program
optimization—for example, the compiler writers use it to find out how well their instruction scheduling or branch
prediction algorithm performs. In our approach, the dynamic profiling technique is used to obtain the dependencies
of entities of methods and classes by executing programs the same way as in live operation based on user scenarios
or operational profiles—a quantitative representation of how the software will be used. Note that in software
reliability engineering, for making reliability estimation, user scenarios or operational profiles [66] are developed

and maintained to describe how users actually utilize the system. These dependencies are obtained by logging the

— 13-

frequency of method calls; those dynamic dependencies are defined as DMCs.

Fig. [4.2] depicts the procedure of dynamic profiling used in this thesis. The java instrumentation technique
[23] is used for dynamic profiling. On the compiled byte code, entering and exiting logging codes are inserted
at the start and the end of all method declarations. This enables the tracing of logs of executed methods while

executing a program without modifying the original source codes.

Table 4.1: Difference between the static method call (SMC) and the dynamic method call (DMC).

SMC DMC
Source of Source codes or Programs execution according
measurement | structural models to user scenarios or operational profiles
Subject of Class and method Object and message
measurement
Degree of Number of Number of
measurement | distinct methods all messages

Dynamic Method Call (DMC). DMC is an instantiated form of a static method call (SMC). The differences
between the DMC and the SMC is explained in Table[4.1] Definition [T] offers a precise definition of the DMC.
Definition 1 (Definition of DMC). When an object 01 sends a message n to an object o0s, there exists a DMC. We

denote this relation as o1 T 0s. In the definition, DMC is represented as dmc and it consists of six attributes as
follows:

- 4d: a unique identifier.

- Meallee: a method from which the message n is initiated; a method called from the method mqiier-
- Mealler: a method which calls mcqjjee-

- CeallType: a calling type class; a structural callee class.

- Cealler an owner class of method mqjier-

- Ceallee an owner class of method mcqjjce-

As listed, ¢d refers to a unique identifier of the dmc. The dmc can be defined with two ends of methods
Mealler ANd Megiiee, and two ends of classes c.qjjer and ceqiiee, Which are the owner classes of those methods.
The ccquType 1s a calling type class that denotes a structural callee class. The DMCs existing in the system can
be retrieved with respect to two parameters: (1) entity (¢) such as method and class; and (2) direction (¢) such
as import and export. The DMC for a class or method in the import direction occur when the class or method
imports services from external class(es); in other words, the class or method uses other methods that are defined
in external class(es). On the other hand, the DMC for a class or method in the export direction occur when the

class or method exports services to external class(es); in other words, other methods defined in external class(es)

use the class or method. We specify each direction of import and export using the following symbols, < and >,

_ 14—

respectively. We denote DM C'(e, 6) as the list of DMCs that are retrieved respect to the entity € and the direction
d.

1 AOMClass -owner -dynamicMethodCall DynamicMethodCaII -dynamicDependency
—@ >
-owner 1 0.” 0.7
* _methods _caller 1 0.x -dynamicReferer
1
AOMMethod]
-callee
-callee
* -referer 1 -caller
-staticReferer 0.*
fields | AOMField | ~ -staticMethodCall | StaticMethodCall 1
* -fields 0.* -staticDependency

Figure 4.3: A metamodel of the AOM used in this thesis.

Abstract Object Model (AOM). AOM is the profiled model; and it is specifically designed for saving the dy-
namically and statically profiled information. Fig. .3 shows the metamodel of the AOM. A method meta-class
AOMMethod is associated with a DMC meta-class DynamicMehtodCall and a SMC meta-class StaticMethod-
Call. This enables a DMC/SMC to be navigable with two ends: a caller method and a callee method. In the
opposite direction, a method is able to navigate the DMCs/SMCs that the method calls and the DMCs/SMCs
by which the method is referred. The DMC meta-class DynamicMehtodCall is also associated with the SMC
meta-class StaticMethodCall. If multiple or even zero method calls exist between two entities (such as methods
or classes) during run-time execution, the SMC counts this as one. In other words, the multiplicity of the SMC
to the DMC is 0..*, whereas the multiplicity of the DMC to SMC is one. This enables the DMC to be navigable
with the SMC from which the DMC is instantiated. In the opposite direction, the SMC is able to navigate DMCs
that are actually instantiated. By maintaining the metamodel of the AOM, information related to the DMCs can be
updated without re-doing dynamic profiling at every trial of refactoring. When dynamic profiling, the DMCs are
mapped into the corresponding SMCs from which those DMCs are instantiated. Therefore, for each application of
refactoring, by adjusting the information related to the SMCs—such as the classes and fields of two ends of caller
and callee methods of the SMCs—, the updated information related to the DMCs can be obtained by tracing the

information related to the SMCs.

4.1.2 Refactoring Candidate Extraction Rules

Based on the DMC:s, the rules are defined for extracting refactoring candidates. By trying every refactoring-
candidate extraction rule, pairs of entities (i.e., methods and classes) are extracted as refactoring candidates ac-
cording to the heuristic design strategy, which is defined in a way aimed at reducing dependencies of those entities;
then, using the max function, the part of refactoring candidates that are highly-ranked with the scoring function

are chosen to be assessed. The heuristic design strategies used in our approach are explained in subsection4.1.2]

— 15—

Elements of Refactoring-Candidate Extraction Rule

Refactoring candidate extraction rules specify where to refactor and which refactoring to use. Each rule
consists of three elements: (1) the scoring function, (2) the max function, and (3) the specific corresponding
refactoring to apply:

Scoring function. A scoring function is a kind of a fitness function. It represents how much each pair of entities—
which is extracted as a refactoring candidate according to a heuristic design strategy—fits into the heuristic design
strategy. Therefore, a scoring function is designed to retrieve how many times a pair of entities is extracted as a
refactoring candidate using the heuristic design strategy.

Max function. It is infeasible to assess all the refactoring candidates extracted from all the defined rules, because
there are too many. Note that to assess refactoring candidates, each refactoring candidate has to be individually
applied to the current version of the program and its effect on the refactored program is evaluated, which requires
a large computation cost. Therefore, we assess only the refactoring candidates that are highly-ranked (top k) with
scoring functions. The role of the max function is to cut off the top k refactoring candidates to be assessed. In the
rule, the cutline number represents k.

Refactoring. As stated in subsection f.1.1] we use two types of refactorings—Move Method and Collapse Class
Hierarchy—, and the operations of those refactorings are presented in Algorithm [T|and Algorithm 2} respectively.
We formulate pre- and post-conditions referring to [88,|36L71]] and check before and after refactoring applications.

We do not specify these conditions in this thesis.

Algorithm 1 Collapse Class Hierarchy

Require: Cicrging: a class that is merging the other class,
Require: Ci,crgeq: a class that is to be merged
for all M, gea € Crnergea do
Move Method(Crergings Mmerged)
Cmerged-ancestor < Crerged-ancestor U Crerging-ancestor
Cierged-descendant <= Cpergea-descendant U Crer ging-descendant
Crerged-field <= Cperged-field U Crerging. field

remove Cryerged

Algorithm 2 Move Method

Require: C': a target class to which a method is moved

Require: M': a method to be moved
M .overridingM ethod < findingOverriding(C, M)
/«findingOverriding function is specified in Algorithm E] *
C.method < C.method U {M }

—16-

Algorithm 3 findingOverriding

Require: c: a target class to which a method is moved
Require: m: a moving method
/*Algorithm findingOverriding returns the method by whichmouvingM ethodis overrided.*/
queue <— ancestor classes of ¢
visitedClass < ()
while queue # () do
tmpClass < remove one element of class from queue
add tmpClass to visitedClass
for all tmpMethod € methods in c do
if tmpMethod = m then
return tmpM ethod
for all ancClass € ancestor classes of tmpClass do
if visitedClass does not contain ancClass then
add ancClass to queue

return null

Design of Refactoring-Candidate Extraction Rule

For each design strategy, pairs of methods (or classes) are extracted as the entities of the refactoring candidate
of Move Method (or Collapse Class Hierarchy), and the number of extractions for the pairs of methods (or classes)
is retrieved by the scoring function. The rules are defined in the following way: a part of refactoring candidates
that are highly-ranked with the scoring function are chosen to be assessed using the max function. Note that for
each strategy, two types—method and class—of scoring functions are obtained, and three rules are defined.

In the following, for each type of heuristic design strategy, we present a brief explanation and the procedure
for obtaining the corresponding scoring functions. We then define the refactoring-candidate extraction rules using

the obtained scoring functions in a semi-formal way.

[Heuristic design strategy type 1.]

Explanation. It is better to gather the methods, which are called by one method but are spread over many different
classes, into one class. Let a method m call the methods, and those called methods are implemented in
different classes. The IV stands for the threshold to determining the situation such that those called methods
are implemented in many different classes. Therefore, we define the following heuristic design strategies:
when those called methods are implemented in the N (N = 2, 3, 4, 5, and 6) classes, those methods (or
their owner classes) are extracted as the entities of refactoring candidates of Move Method (or Collapse
Hierarchy Class). In this thesis, we set the N from 2 to 6, because we have tested for all methods in all three
subjects—jEdit, Columba, and JGIT—, and the maximum number of different classes for each subject does
not exceed 6. Note that 1 need not to be examined because it means all the called methods are in the same

class. The N is not fixed and can be differentiated according to the characteristic of the used project.

17 -

Algorithm 4 get NDiff M_and_NDiff_C (N =2, 3,4, 5, 6)

for all c € classes in the system, m € methods in ¢ do

dif fClass <) /*a set for saving different callee classes™/
for all dmc € DM C(m,<) do
if dmec.ceqiiee # ¢ then
add dme.ceqee to dif fClass
if dif fClass.size > N then
for all dmc,, dmcy € DMC(m,=<) do
if dmcy # dmco then
€1 4= dmey Ceallee, C2 = dMC2.Cegllee
if 1 # co && ¢ # ¢ && ¢ # c then
NDiff_C({c1,c2}) « NDiff C({c1,c2}) + 1
my <= dmci1.Meallee, M2 <= dMC2.Meqlice
if m; # mo && my # m && my # m then
NDiff M({my, ma}) < NDiff M({m1,ms2}) + 1

Procedure. Algorithm[d]is illustrated for obtaining scoring functions as follows. For all class ¢ in the system, and
for all method m in class c, let a method m call the methods, and those called methods are implemented
in different classes. If the number of different classes is greater than or equal to N—the threshold to
determining the situation such that methods are implemented in many different classes—, then the pair of
methods in the list of the called methods is extracted as the entities of the refactoring candidate of Move
Method, and the number of extraction for the pair of methods is increased for the scoring function NDiff M
(when methods in the pair are neither identical to each other nor identical with the method m). This also
applies to the class-level; therefore, the pair of classes in the list of classes—the owner classes of those
called methods—is extracted as the entities of the refactoring candidate of Collapse Hierarchy Class, and
the number of extraction for the pair of classes is increased for the scoring function NDiff_C (also when

classes in the pair are neither identical to each other nor identical with the class c).

Rules. The N stands for 2, 3, 4, 5, and 6, hence for this type of the heuristic design strategy, five design strategies

are defined; then, a total of 15 rules are defined.

® Ry(n=2), Ryv=3)s R7(n=1)s Rio(v=5)s Riz(v=6):
Y(ci, ¢;) € max(NDIft_C, cutline)

— Collapse Class Hierarchy(c;, c¢;)

® Rov=2), R5(nv=3)s Rg(v=1)s R11(v=5)s R1g(v=6):
Y(my, m;) € max(NDiIff M, cutline)

— Move Method(owner class of m;, m;)

® R3(v=2), Re(nv=3)» Ro(n=4)s Rio(n=5)s Ris(v=6):

— 18-

Y(m,, m;) € max(NDiff M, cutline)

— Move Method(owner class of m;, m;)

Algorithm 5 getl C_and_I-M
for all ¢ € classes in the system, m € methods in ¢ do
if m # null then
for all dmc; € DM C(m,<) do

€1 4 dmcei .Cealler, C2 < dMCy.Cealiee

if c; # co && ¢ # ¢ && co # c then
I .C({c1,c}) « I C({c1,e0}) + 1

my <= dmey.Mealier, M2 = dMC1.Meallee

if my # mo && my # m && msy # m then
I_M({my,mz}) < I_-M({mi,ma}) +1

[Heuristic design strategy type 2.]

Explanation. Again, it is better to gather methods that have many interactions into one class. Let a method m call
the other method n, and those methods are implemented in different classes. Then, we define the following
heuristic design strategy: when those two methods have interactions, those methods (or their owner classes)

are extracted as the entities of refactoring candidates of Move Method (or Collapse Hierarchy Class).

Procedure. Algorithm[3is illustrated for obtaining scoring functions as follows. For all class ¢ in the system, and
for all method m in class c, let a method m call the other method n, and those methods are implemented in
different classes. Subsequently, the pair of methods is extracted as the entities of the refactoring candidate of
Move Method, and the number of extraction for the pair of methods is increased for the scoring function I_ M
(when the methods in a pair are not identical to each other). This also applies to the class-level; therefore, the
pair of methods classes—the owner classes of those methods—is extracted as the entities of the refactoring
candidate of Collapse Hierarchy Class, and the number of extraction for the pair of classes is increased for

the scoring function I_C (also when classes in a pair are not identical to each other).

Rules. For this type of the heuristic design strategy, one heuristic design strategy is defined; then, three rules are
defined. Note that for each rule, the refactoring candidates which are highly-ranked (top cutline) with scor-
ing functions are chosen to be assessed; this can be said that the pairs of entities that have many interactions

are chosen to be assessed.

e Ris: Y(c, ¢;) € max(1_C, cutline)

— Collapse Class Hierarchy(c;, c¢;)

e Ri7: Y(m,, m;) € max(I_M, cutline)

— Move Method(owner class of m;, m;)

—19-

e Ris: Y(m, m;) € max(I_M, cutline)

— Move Method(owner class of m;, m;)

—20—

4.2 Bottom-Up Approach: Grouping Entities into Maximal Independent
Sets

+ RED: Refactoring Effect Dependency
* MIS: Maximal Independent Set &

Object Oriented Source Code i

o :
fitis (o - GmaB o0 = w8 tS o0
atiocation(new Po c([ans

th
q) 65 siseaniibeT

v \ |

Constructing RER-aware Graph

, v \
RER-aware Graph
! |
e ™

Grouping Entities into Maximal
Independent Sets

\. v
— MIS1 Mlsz MIS3 MiS4
Maximal Independent Sets of .. °o® Oo o Off o o

Figure 4.4: Overall approach of the bottom-up approach: grouping entities into MISs.

For grouping of elementary refactorings considering the RED, the RED-aware graph is constructed; and
based on the graph, the entities of methods and attributes are grouped into the MISs. By referring the delta table—
obtained from the refactoring effect evaluation framework for evaluating each elementary refactoring effect on
maintainability—, methods involved in each MIS are mapped into a group of elementary Move Method refactor-
ings. Note that the Move Method refactorings in the same group can be applied at the same time. The Fig.
illustrates the procedure for the approach of the bottom-up approach—grouping entities into MISs.

Before explaining about the algorithm of RED-aware grouping of MISs, we explain the importance of the

RED.

4.2.1 Refactoring Effect Dependency (RED) on Maintainability

When grouping elementary refactorings that are to be applied at the same time, refactoring dependency
needs to be considered. The syntactic dependency of refactorings indicates that the application of one refactor-
ing changes or deletes elements necessary for the other refactorings thus it disables those refactorings. Many
research efforts have been invested in resolving the syntactic dependencies of the refactorings and applying as
many refactorings as possible for improving maintainability of software.

Even though the refactorings are not conflict each other, however, applying all the refactorings—that are

expected to improve maintainability—does not guarantee to improve maintainability. This is because refactorings’

~_21 -

Class A Class B Class C

% Class D
\\@

(a) An example design.

Class A Class B Class C

(b) After moving method m3 to class A (from Fig. [4.5(a)).

(2)
(&)
|

Target Class Target Class

D|A|B|C|D p|lalB|lc|D
- ml| 1 - 1|1 - ml|-1| - 0| O
Om2 -|-1)0|1] 2/m2| -[1[1]0
®m3| 2| - o O m3|-[2]2]3
%D ma| 0 |-1| - | 0 %o mal-1lo|-|o
Elms| -1 0]o0] - S| ms|-1]/0[0] -
§ mé| - |[-1/0]0 § me| - | 1|11

m7| - |-1]|0] 0 m7| - [1|11
(¢) A coupling for each moving method (d) A coupling for each moving method
refactoring (Fig. fF-3@). refactoring (Fig. F-3(B).

Figure 4.5: A motivating example of showing the need of the RED on maintainability.

effect on maintainability is dependent each other. Once a refactoring applied, the design configuration of the
software is changed; and this may influent other refactorings’ effect on maintainability. In other words, other
refactorings’ effect on maintainability may be changed as the status (e.g., how the entities are associated and
where the entities are placed) of the software design is changed. Therefore, the pre-calculated (i.e., intended)

effect on maintainability of other refactorings—that even do not have syntactic dependencies—may be changed.

22 _

Fig. [4.3]is a motivating example showing the need of RED. The system (in Fig. consists of four classes
and each class contains methods A = {mg, mg, m7}, B = {my, m3}, C = {my}, and D = {m;}; and the method
calls are represented with directed edges. Let the number of edges across the classes be coupling value. Each
cell in the table (rows: moving methods, columns: target classes) in Fig. represents the delta of coupling
value after the application of each Move Method refactoring on the design (Fig. f.5(a)). For example, the delta of
coupling value after moving the method ms to the class A is -2. (Let Move Method(method mg3, class A) denote
this refactoring.) In other words, this application of refactoring reduces the coupling value as -2. Then, expected
output of total reduced coupling value after the application of the two refactorings, Move Method(method ms,
class A) and Move Method(method ma, class B), is -3 (= -2 -1). However, after applying Move Method(method
ms, class A), the design configuration is changed (as in Fig. £.5(b)). The cells shaded with pink color in Fig.
represent the changed delta of coupling values after the application of the refactoring Move Method(method msg,
class A). As a result, the delta of coupling value after the application of the refactoring Move Method(method ms,
class B) is +1 (not -1); and the actual output of total reduced coupling value by applying those two refactorings is
-1 (=-2 +1). Without considering the RED on maintainability, not intended results may come up; and even worse
the total effect of the application of refactorings may be none. To the best of my knowledge, no one noticed or
discussed this kind of refactoring dependency before.

The RED is essential to be considered to correctly identify a group of refactorings that most improve main-
tainability for each iteration of the refactoring identification process. As a result, when grouping elementary
refactorings, we take into account the new dependency of refactorings—RED. We provide the clear definition of
the RED on maintainability.

Definition 2 (Definition of the RED on Maintainability). The effect on maintainability of refactoring A and refac-

toring B is dependent each other, when the application of the refactoring A changes the effect on maintainability

of refactoring B, and vice versa, even those two refactorings are not syntactically dependent.

4.2.2 Algorithm of RED-aware Grouping: Maximal Independent Set (MIS) Calculation

We develop the method for RED-aware grouping of elementary refactorings by using the concept of the MIS

in graph theory.

Maximal Independent Set in Graph Theory

We present a MIS [53] 59, [1] in graph theory. Its concept is used for grouping of elementary refactorings.
Given a graph G = (V, E), an Independent Set (IS) is a set of vertices S C V such that if u, v € .S, then (u, v) € E.
In short, an IS is a set of vertices in GG such that no two vertices in IS are adjacent (i.e., connected by an edge). A
Maximal Independent Set (MIS) is an IS to which no more vertices can be added without violating independence
property. In short, a MIS is an IS that is not a subset of any other IS. A Maximum Independent Set (MaxIS) is an
IS with maximum cardinality among all IS sets of G.

Finding a MIS is trivial in the sequential algorithm; it just scan the vertices in arbitrary order. If a vertex u

—23_

g /\P\ /\

O

(a) Initially, I = empty.

61
K /\/\

/\Q %V&/\
O

(c) Phase 1: Remove V1 and neighbors N(V1).

/\ \ \
o/ 5/ /

(e) Phase 2: Remove V2 and neighbors N(V2).

| /\/_/\/\
? L AL
oﬁ \g

(b) Phase 1: Pick a node V1 and add it to 1.

(d) Phase 2: Pick a node V2 and add it to I.

G

@\/ a

Q\\/Q\
/O

// \{

(f) Phase 3,4,5,...

: Repeat until all nodes are removed.

NS

0N

(g) At the end, set I will be an MIS of G.

Figure 4.6: A sequential algorithm of calculating a MIS. This is reference from the lecture note of Costas Busch

[17].

does not violate independence, then add u to the MIS. Otherwise, if u violates independence, then discard u. The

figures (in Fig. [£.6) illustrate the sequential algorithm for calculating a MIS.

On the contrary, computing a MaxIS is a notoriously difficult problem. It is equivalent to maximum clique
on the complementary graph. Both problems are NP-hard, in fact not approximable within nze.
finding all the existing MISs is also the NP-hard problem. For the reason stated above, we use some heuristic for
calculating MISs, which is scalable for large size of programs. We try to find MISs, each of which has as many
independent entities (which are later to be transformed into elementary refactorings) as possible. This is because

the more elementary refactorings are in a MIS, the larger maintainability improvement can be expected. Thus,

_24 —

Therefore,

we find the intermediate groups of entities—that already have the large number entities as possible—by grouping
the entities using transitive independent relations. This algorithm is also deterministic—the calculated the MISs

is always same for a certain system.

Algorithm of RED-aware Grouping: Maximal Independent Set Calculation

For RED-aware grouping of elementary refactorings, we calculate MISs of entities based on the graph of the
RED-aware graph; and entities in a MIS is be mapped into elementary refactorings in a group. Note that each
elementary refactoring in the group can be applied at the same time.

The RED-aware graph Gg = (Vg, ER) of the corresponding object-oriented program is constructed as fol-

lows.
e Vi = {methods, attributes }

e Epr = {method_calls(method m,, method my),
attribute_assesses; (method m, attribute a1),

attribute_assessesa(method mq, method ma2)}.

The vertices (V) indicate the entities of methods and attributes. The edges (E'r) indicate the association between
entities. The entities that are associated when they are preferably to be located in the same class for improving
maintainability (in term of low coupling and high cohesion). To this end, we connect the edge between the entities
when (1) a method calls the other method (method_calls), (2) a method assesses an attribute (attribute_assesses),
and (3) two methods assess the same attribute (attribute_assessess).

The Fig. shows the algorithm for the method of calculating MISs. In the algorithm, we provide the strict
constraints to prevent from producing different outcome of MISs for every execution on the same input system.
For the first step, based on the RED-aware graph Gr = (Vg, ER), the independent relations are extracted. An
independent relation indicates the relation: two vertices u, v € Vg and (u, v) € ER. For the second step, we
find the intermediate groups of entities—that already have the large number entities as possible—by grouping the
entities using transitive independent relations. The size of the intermediate groups of entities should be greater
than threshold A. The threshold) is determined by the average size of the intermediate groups of entities of
the certain programs. We use the threshold to cut the candidates of intermediate groups of entities; and in the
experiment, we show that the calculation for MISs is scalable for large size of programs. After determining the
intermediate groups of entities, we assign the remaining entities—that are not added into the groups—until no
more entities can be added to any other groups of entities without violating the independence property. Finally,
MISs of entities are obtained. Then, we exclude entities of attributes from the MISs of entities. Please note that, in
the thesis, we use the Move Method refactoring as the elementary refactoring. As mentioned in subsection [4.1.1]
we do not consider Move Field refactoring—moving attributes (i.e., fields) from one class to another class—,

because fields have stronger conceptual binding to the classes in which they are initially placed since they are less

—25-

import sys
from MRModel import *
from MREntity import *
from MRMethod import *
from MRField import *
from MRClass import *
from numpy import *
import scipy as sp
import random
def generateIndependentSets(matrix, numMethod):
(rows, cols) = matrix.nonzero()
independent_vertex_set_set = set()
for k in range(50):
independent_vertex_set_len = len(independent_vertex_set_set)
rowidxs = list(range(len(rows)))
random.shuffle(rowidxs, random.random)
independent_vertex_set = set(range(numMethod))
while len(independent_vertex_set) > 0:
next_independent_vertex_set = set()
next_row_idx = []
for i in rowidxs:
if rows[i] in independent_vertex_set and cols[i] in independent_vertex_set:
independent_vertex_set.remove(cols[i])
next_independent_vertex_set.add(cols[i])
next_row_idx.append(i)
rowidxs = next_row_idx
random.shuffle(rowidxs)
fivs = frozenset(independent_vertex_set)
rm = set()
for vs in independent_vertex_set_set:
if vs < fivs:
rm.add(vs)
if fivs < vs:
rm.add(fivs)
independent_vertex_set_set.add(fivs)
for vs in rm:
independent_vertex_set_set.remove(vs)
independent_vertex_set = next_independent_vertex_set
return independent_vertex_set_set

Figure 4.7: The algorithm for calculating MISs.

likely than methods to change once assigned to a class [88]. The example of MISs that can be obtained from Fig.

or Fig. |4.5(b)|is MIS; = {m1, m2, m4, m6, m7} and MISs = {m1, m4, m5, m6, m7}.

—26—

Chapter 5. Selection of Refactorings to be Applied

[Object-Oriented Source Code]
CCHsand MMs |

1) v

(MISs)

v

— N

" : . Refactorings’ Effect Evaluation Framework
Entities are mapped into Transform into _ _
Elementary Refactorings || Elementary Refactorings [L] [Creatlng?v| Membership }
atrix
[Link Matrix] [Membership Matrix]
I—)[Deriving Delta Table J(—l
Miss CCHs MMs N ¥ 4
Groups of Elementary Refactorings) [Delta Table]
I—)[Accessing Effect of Refactorings }(—I
2
Effect of GER1 | GER2 | GER3 | GER4 | GERS5
Refactorings 4 2 2 1 3
v Selected Elementary
* MM : Move Method refactoring - - Refactorings
+ CCH: Collapse Class Hierarchy Selecting Multiple Elementary
refactoring Refactorings

* MIS : Maximal Independent Set of
refactorings
* GER: Group of Elementray Refactoring

Figure 5.1: Overall approach of the selection of multiple refactorings.

We provide the method of selecting refactorings by supporting assessment and impact analysis of elemen-
tary refactorings based on the matrix computation. It is important that the method of elementary-level refac-
toring computation (our refactoring selection method) enables selecting multiple refactorings. Furthermore, this
method supports to extend considering refactorings to other various type of refactorings; because the action of big
refactoring (e.g., Collapse Hierarchy Class refactoring) comprises of elementary refactorings (e.g., Move Method
refactorings).

The procedure of refactoring selection consists of the several activities: (1) calculation for each of elementary
refactoring’s effect on maintainability (Delta Table Derivation), (2) checking whether there are duplicated elemen-
tary refactorings (i.e., syntactic dependencies) or the RED among refactorings—that are identified as refactoring
candidates in chapter [f}—(Refactoring Impact Analysis), (3) finding multiple (elementary) refactorings—that can
be applied at a same time—containing refactorings that most improve maintainability, and (4) identification of
the impacted refactorings after applying selected refactorings (Refactoring Impact Analysis) and recalculation of
the changed values for those impacted refactorings. The Fig. [5.1]illustrates the procedure for the approach of the
selection of multiple refactorings.

Before explaining about the procedure of refactoring selection, we briefly present the method how to assess

refactoring candidates.

_27—

Method of Refactoring Candidate Assessment

Before making a decision on which refactorings to apply, refactoring candidates need to be assessed.

In the previous studies, each of the refactoring candidates is assessed by using a simulation model or using a
virtual application method. This is because (1) the actual application of the refactoring candidate on source code
adds a significant overhead due to disk write operations (once for applying each refactoring and once for undoing
it) [87]; in addition, (2) the evaluation of the design quality of maintainability does not necessarily require all the
information on the source code. For using a simulation model, a refactoring candidate is applied and the effect
of the applied refactoring is assessed by evaluating maintainability on the transformed simulation model (i.e., the
refactored model); then the application of the refactoring candidate is rolled back. For instance, in Seng’s work
[82], they transform the source code into a suitable model using standard fact extraction technique; and they use
this model for simulating the source code refactorings and calculating the impact of these refactorings on the
fitness function. In our previous study of cost-effective refactoring identification [38]], the AOM—the profiled
model mentioned in the previous section [d.1.T—is used for this purpose. For using a virtual application method,
the effect of a refactoring candidate is estimated (without application) by updating elements that are needed for
evaluating maintainability (i.e., calculating fitness function). For instance, in Tsantalis’ work [87]], to assess the
effect of a Move Method refactoring opportunity, they update the entity sets which are involved in the move of the
corresponding method.

To evaluate maintainability of the refactored design of software, the quantitative fitness function of main-
tainability (e.g., QMOOQOD [8] and Maintainability Index (MI) [69]) is needed. By using the fitness function of
maintainability, refactoring candidates are evaluated and ranked in the order of their expected degree of improve-
ment on maintainability. Therefore, the refactoring(s) that mostly improve fitness value can be selected. For
instance, for the quantitative fitness function of maintainability, the weighted sum of design metrics are used in
Seng’s work [82]], and the maintainability evaluation function [38]—designed as cohesion metrics over coupling
metrics—is used in our previous work. In Tsantalis” work, they use the Entity Placement metric [87]].

In this thesis, we provide the method for assessing elementary refactorings by using matrix computation. We
derive a delta table (see in[5.1)), each cell of which indicates delta of maintainability after the application of each
Move Method refactoring on the current design configuration. The matrix computation is used for calculating each
of elementary refactoring’s effect on maintainability. The maintainability is calculated based on the information of
links—e.g., the entity a is associated with the entity b—and memberships—e.g., the entity a is placed in the class
A—of the entities. This way of assessing the effect of refactoring is similar to the one using a virtual application
method, since it estimates the effect of each of elementary refactoring by using the design status (e.g., links and
membership of entities) information without actually applying those refactorings. In addition, maintainability (see
subsection used in the thesis provides the quantitative measure, therefore, each of elementary refactoring’s

effect on maintainability can be used for refactoring selection criteria.

_28—

5.1 Calculation for Each of Elementary Refactoring’s Effect on Main-

tainability: Refactoring Effect Evaluation Framework
Maintainability

In object-oriented software, two objectives—high cohesion and low coupling—have been accepted as im-
portant factors for good software design quality in terms of maintenance [33]; because by adopting these design
quality metrics, less propagation of changes to other parts of the system or side effects would occur [10, 6]. Cohe-
sion corresponds to the degree to which elements of a class belong together, and coupling refers to the strength of
association established by a connection from one class to another. To this end, the associations among the entities
belonging to a class (inner entities) should be largest as possible (high cohesion). At the same time, the associa-
tions between the entities not belonging to a class but to other classes (outer entities) and the entities belonging
to the class itself should be smallest as possible (low coupling). Based on this concept, we measure maintain-
ability of the design for overall object-oriented software as the number of the associations across the classes. The
associations indicate the edges in the constructed graph G that are presented in subsection [4.2.2] Therefore,
maintainability can be assessed by the number of edges (i.e., associations) whose two ends of vertices are located
in different classes. This number naturally represents the lack of degree of association to which entities of a class
belong together (lack of cohesion) and, at the same time, the degree of association to which entities of one class
to another have (coupling); as a result, by applying refactorings, we aim to reduce this number (for improving

maintainability).

Definition of Delta Table

We derive a delta table, each cell of which indicates delta of maintainability after the application of each
elementary refactoring on the current design configuration. This delta table is used for refactoring selection
criteria. The matrix computation is used for calculating each of elementary refactoring’s effect on maintainability.
For the delta table, the row elements indicate the moving methods and attributes, while the column elements
indicate the target classes. The matrix computation is fast, thus it provides efficient computation for deriving the

delta table.

Establishment of Refactoring Effect Evaluation Framework: Derivation of Delta Table

The Fig. shows the algorithm for deriving a delta table.

The delta table is calculated as follows. We use the RED-aware graph G to form the Link matrix (L). The
L denotes the link information from an entity to an entity. Each entity indicates a method or an attribute—which
is contained in a program. The value of cell of the L denotes the strength of the relation. When there is an
association from an entity (row) to an entity (column), then the value of one is accumulated to the cell of the L
is 1; otherwise, when there is no association between two entities, the cell of the L is 0. Note that we distinguish

the direction of the edges, therefore, when two entities have associations each other, then the value of cell of the

—29_

def getInternalExternalLinkMatrix (self):
internal_link_mask = self.membershipMatrix * self.membershipMatrix.T
internal_link_matrix = self.linkMatrix.multiply (internal_link_mask)

external_link_matrix = self.linkMatrix — internal_link_matrix
return (internal_link_matrix, external link_matrix)

def invertedMembershipMatrix (self, M) :
new_matrix = zeros ((len(self.entities), len(self.classes)), dtype='int32")
(rows, cols) = M.nonzero ()
for i in range (len(rows)):
v = Mlrowslil, cols[i]]
new_matrix[rows[i], :] = new_matrix[rowsli], :] + v
new_matrix[rows[i], cols[il] = 0

ret = Sp.coo_matrix (new_matrix)

return ret

def getEvalMatrix (self):
(internal_matrix, external_matrix) = self.getInternalExternallLinkMatrix ()
IP = internal _matrix * self.membershipMatrix
EP = external_matrix * self.membershipMatrix
[IP = self.invertedMembershipMatrix (IP)
D =1IP — EP
return D

Figure 5.2: The algorithm for deriving a delta table.

L becomes 2. Since there is no association between fields, the cell of the L is 0. The Membership matrix (M)
denotes the membership information of an entity to a class. The cell of the M is 1, when an entity (row) is placed
in a class (column); the cell of the M is 0, when the entity is not located in the class. Note that even though we do
not consider Move Field refactorings, we need to consider attributes as entities of delta table for calculating delta
of maintainability affected by the location of the attributes. When those two matrices, L and M, are multiplied,
the Projection matrix (P) is produced. The P represents the link information from an entity (row) to a class
(column). For deriving a delta table, we first compute two types of the P: Pr,; (internal projection matrix) and
Prg.+ (external projection matrix), each of which is computed by the multiplication of the M with Lj,; (matrix

denoting internal links) and L g,; (matrix denoting external links), respectively.
Prnt = Lint X M,
Pgyy = Lpgt x M.

As was noted in subsection [5.1} the maintainability is assessed by the number of external links—edges (associa-

tions) whose two ends of vertices (entities) are located in different classes—in the system, and this number should

—-30 -

be reduced for improving maintainability. The cell of the Py, is 1, when the internal link exists from the entity
(row) to the class (column). This means that moving the entity to other classes (other than the class itself) will
potentially increase the external links in the system. To this end, we use Inv() function for Pr,:. The Inv()
function inverses the cell of Py, (entity, class itself) as 1 — 0 and Pr,(entity, other classes) as 0 — 1. The cell
having 1 in Pg,; means that the external link exists from an entity (row) to a class (column). This means that
moving the entity to the class itself will decrease the external links in the system. Finally, by using the formulation
below, we can get the delta table (D) of which each cell is delta of maintainability value after application of each

Move Method refactoring on the design.

D = Inv(Prpt) — Pgat.

5.2 Refactoring Impact Analysis

Refactoring impact analysis is used in (a) checking whether there are duplicated elementary refactorings
or the RED among refactorings, and (b) identifying of the impacted refactorings after applying refactorings for
updating changed maintainability values.

The refactoring impact analysis of (a) is done when they attempt to grouping refactorings—that can be
applied at a same time—(to make a more bigger refactoring). For this, refactorings are projected into elementary
refactorings (i.e., Move Method refactorings). Then, among the elementary refactorings, we check whether there
are duplicated elementary refactorings (i.e., syntactic dependency) or the RED.

The refactoring impact analysis of (b) is done for identifying of the impacted refactorings after applying
refactorings for updating changed maintainability values. In the internal projection matrix (Pr,) and the external
projection matrix (Pgy;), the following cells are changed: classes that are changed in M (i.e., owner class of
moving method and target class) and linked methods with the moving method. Therefore, only those changed

cells need to be recalculated.

5.3 Selection of Multiple Refactorings

We select the group of refactorings—that can be applied at the same time—containing the multiple elemen-
tary refactorings that best improves maintainability. The refactorings are selected from the identified refactoring
candidates—(1) Collapse Class Hierarchy refactorings and (2) Move Method refactorings (in section @.T)) and 3)
MISs (groups of elementary (i.e., Move Method) refactorings) (in section . For selecting multiple refactor-
ings, accumulated values of delta of maintainability for each group of refactoring candidates are prioritized in the
descending order, and the group of refactoring candidates which has the largest value are selected.

Using the delta table, methods involved in each MIS are transformed into a group of elementary refactorings.
For instance, for each method m in a MIS, the Move Method refactoring that has the largest delta of maintainability

is mapped out of all available Move Method refactorings (method m, class ¢), where ¢ # owner class of method

_31-

m and c € classes in the system. In short, the Move Method refactoring is determined by comparing the values of
delta of maintainability for the row of entity of method m in the delta table.

After selection, we recalculate the changed values of impacted elementary refactorings for updating the delta
table. In addition, the M and L matrices are updated. The procedure of refactoring identification is iterated until
no more group of refactoring candidates for improving maintainability are found.

It is important to note that before selecting multiple refactorings, we check the specialization ratio (S) [44],
which is a measure used to prevent merging of too many classes together and getting the class hierarchy wider. S
is formulated as follows: (f of classes - f of root classes) / (of classes - § of leaf classes), where the root classes
are the distinct class hierarchies, and the leaf classes are the ones from which the other classes do not inherit. S
measures the width of the inheritance tree; in other words, S is the average number of derived classes for each base
class. Therefore, a higher value indicates a wider tree. If the S of the refactored model exceeds specific threshold

7, then an alternative refactoring (for example, a refactoring with the second-largest fitness value) is selected.

Example

By following the procedure explained above, Fig. [5.3]illustrates how to obtain the delta table (Fig. for

the corresponding design (Fig. 4.5(a)). Note that Fig. [5.4] represents the matrices required to calculate the delta
table (Fig. {.5(c)).

—32_

Lint X M

(@) Prnt

:LE:ct x M

() Ppot

(¢) D = Inv(Prnt) — Peet

for the design of Fig.

Figure 5.3: Example of calculating the delta table (D) of Fig.

—33_

ml

m2

m3

m4

mb5

mé

m7

ml

m2

m3

m4

m5

mb6

m7

oOj|jlo|lo|o |~ |O|O

oO|lo|o|lo|j|o|o |o©

O|lo|lo|o|o|Oo |+

OoO|lo|o|o|o|o |o

OoO|o|lo|o|o|o |o

oO|lo|lo|o|o|o |o

OoO|lo|lo|o|o|o |o

M|A|B|[C|D
Ly [M1{m2 m3(md|m5\m6ém7| (m1|/ 0| 1|/0]0
mijojojojojojolol fmal1lololo
m2]olol1lolilolo] FERF T o 0
mof[1][of1|of1]1
ma|olo|1lo]olo|o| MJOJ011]0
ms|o|1]olofo|ofo| |MS[O|O]Of1
mé|o|o|[1|oflo]|ofo| (mB]L1|0O|[O]O
m7|ofo|1|oflofo|O0| |mZ[]1|0]|0f0O

(a) Internal link matrix (Lz,,;).

(b) External link matrix (L gg).

P|A|B|C|D| [Inv(P)|A|B|C|D
mi(O|1(0]0O ml 11011
m|0|0|0]|0 m2 |0)|0|0|0
m3(O0|1(0(0O m3 11011
md|0|0|0]|O0 md |0)|0|0|O0
m5|0|0|0]|0 mS |0|0|0|O0
m6|0|0|0]|O0 m6 |0|0|0|O0
m7|0|0|0]|0 m7 |0)|0|0|O0

(c) Membership matrix (M).

PExt

ml

m2

m3

mé

m5

mb6

m7

o|lo|lr|lo|lw|lo|lo|>

— |~ |lo|lr|lo|lr|o|lm

oO|jlo|o|lo|—,r|O|OC|O

oO|jlo|o|lo|lo|—m|O|O

(d) Internal projection matrix
(PI nt)

Figure 5.4: Matrices matrices required to calculate the delta table (Fig. 4.5(c)).

(e) Inversion of internal projec-

tion matrix (Inv(Pr,¢)).

D|A|B|C|D
mif 1(-|1
m2| - |-1[0|-1
m3|-2| -0
mdf 0(-1| -0
m5(-1(0) 0] -
mé -1 0
m7 110

(g) Delta Table.

~34

(f) External projection matrix
PEat)-

Chapter 6.

Tool Implementation

/

Static
Profiler

ﬁ/ Class definitions |

J

compile
Java Byte Code /< // JavaC g(;):rce
v
Dynamic Dynamic profiling Static profiling
Profiler
v
Dynamic method Static method
calls / calls
A\ 4
Dynamic-static N . . . L
Composer > Dynamic-Static mapping [€
~ /’ Abstract Object E
P / ModeIéAOM) /—\ /
Refactoring .. Extracting refactoring N
Extractor H candidates . .
_ ' J Selecting & applying
\ Refactoring | _s 2

candidate

Refactoring candidate

I

best refactoring for
transforming AOM

Refactoring Selector\

Selected
refactoring logs

identification rules 7 y
Refactoring Simulating refactoring [
Simulator candidates
N
/ Tentatively eise

i refactored AOM
7

Metric Measurer &
Fitness Evaluator

]

____________ Measuring metrics &

0 Evaluating fitness values
v L

s 4

\ 4
i N .
Z/_/ > > Generating results

No
improvement/

Maintainability
evaluation function

y

Fitness value

A sequence of /
refactorings

Figure 6.1: Overall tool architecture.

The proposed method has been implemented [37] using Java with Eclipse environment. Fig. [6.1]illustrates
the overall tool architecture. The following main modules comprise the tool: static profiler, dynamic profiler,
dynamic-static composer, refactoring simulator, metric measurer, fitness evaluator, and refactoring selector. In
the static profiler, given the Java source code, code structure information such as SMCs and class definitions
are extracted. On the other hand, in the dynamic profiler, DMCs are extracted by executing a Java byte code
compiled from the Java source code using user scenarios or operational profiles. In the dynamic-static composer,
the DMCs are mapped into corresponding SMCs from which those DMCs are instantiated, and the base Abstract
Object Model (AOM) is constructed. More detailed explanation of AOM is provided in subsection {.1.1] In
the refactoring extractor, refactoring candidates are extracted using refactoring-candidate extraction rules. In the
refactoring simulator, refactoring candidates are applied by transforming base AOM, and tentatively refactored
AOMs are produced. In the metric measurer and the fitness evaluator, for all tentatively refactored AOMs, metrics

are derived and used to calculate the fitness value of the maintainability evaluation function. In the refactoring

—-35 -

selector, if no more refactoring candidates for improving fitness values are found, the tool is stopped, and it
generates the selected refactoring logs as output indicating a sequence of recommended refactorings. Otherwise,
the refactoring that makes the refactored AOM with the best fitness value is selected in a greedy way and applied,
then the base AOM is updated into the refactored AOM, only when the specialization ratio of the refactored AOM
does not exceeds the specific threshold . After that, the procedure of the refactoring extractor, the refactoring
simulator, the metric measurer, the fitness evaluator, and the refactoring selector are iterated. In addition to the
best selection mode, the tool can be operated in a user-interactive mode. In user-interactive mode, users can select

the preferred refactoring. Fig. shows a snapshot of the tool operation.

‘a Export Settings. Np—— " - . |
Rule name Status Fitness
Rulel org.gjt.spjedit.bsh.JavaCharStream + org.gjt.spjeditbsh.Token 0.36963305
Rule2 org.gjt.sp jedit ActionSet <- addKeyBinding 0.38061446
Rule3 org.gjt.sp jeditinput. AbstractinputHandler <- getProperty 0.3806076
Rulea org.gjt.sp jedit.GUIUtilities - org.gjt.spjeditjEdit 0.3806
Rules org.gjt.sp jedit.gui.statusbar.StatusWidgetFactory - org.gjt.sp jedit.gui.statusbar.OverwriteWidgetFactory 0.38110065
Rule6 org.gjt.sp jedit.gui.statusbar.StatusWidgetFactory - org.gjt.spjedit.gui.statusbar.OverwriteWidgetFactory 0.38110065
= Continue? L=
@3 Do you want to continue refactoring?
- - Ll :
& Export Settings =]
il Rul.. Status Fitness
Rulel org.gjt.sp.jedit.bsh.JavaCharStream + org.gjt.sp.jedit.bsh.Token 037011996
Rule2 org.gjt:sp jedit ActionSet <- addkeyBinding 0.38110048
Rule3 org.gjt.sp.jeditinput AbstractinputHandler <- getProperty 0.38109404
Ruled org.gjt.sp jedit. GUIUtilities + org.gjt.spjedit JEdit 0.38105983

RuleS org.gjt.spjedit.search.HyperSearchResults$TreeNodeCallbackAdapter + org.gjt.spjedit.search.HyperSearchTreeModeC... 0.38103348
Rule6 org.gjt.sp jedit.search.HyperSearchResults$ TreeNodeCallbackAdapter + org.gjt.spjedit.search. HyperSearchTreeMNodeC... 0.38103348

i OK i I Cancel

Figure 6.2: A snapshot of tool operation.

—36 —

Chapter 7. Evaluation

In the first subsection, research questions that we investigate in this experiment are presented. In the second
subsection, the experimental subjects and data processing method for those subjects are explained. In the third
and fourth subsections, the evaluation design is explained, and the results are presented, respectively. The final

subsection ends with threats to validity.

7.1 Research Questions

We evaluate our approach of refactoring identification in two aspects: dynamic information-based identifi-
cation of refactoring candidates and RED-aware selection of multiple refactorings. The research questions for
our experiments are as follows. The first research question is to test the usefulness of the overall approach by
using dynamic information in identifying refactoring candidates, while the second research question is to test the
capability of the approach in extracting refactoring candidates. The third and fourth research questions are to test

the effect of using Groups of Elementary Refactorings (MISs) and the effect of the RED, respectively.

RQ1. Effect of dynamic information for effective refactoring identification

Is the dynamic information helpful in identifying refactorings that effectively improve maintainability?

RQ2. Effect of dynamic information for extracting refactoring candidates in frequently changed classes
Is dynamic information helpful in extracting refactoring candidates in the classes where real changes had

frequently occurred?

RQ3. Effect of selection for multiple refactorings
Do the multiple refactorings help to improve maintainability and reduce the costs of search space exploration

and computation?

RQ4. Effect of the RED

Is the RED important when grouping entities into MISs for improving maintainability?

7.2 Subjects and Data Processing

Three projects are chosen for experimental subjects: jEdit [49]], Columba [20], and JGIT [52]. A number of

reasons led us to select these subjects.
e The full source code of each version is available.

e They contain a relatively large number of classes.

—-37 -

Table 7.1: Characteristics and development history for each subject.

Name jEdit Columba JGIT
Type Text editor Email client Distributed source version control system
Total # of revisions 19501 458 1616
Report period 2001-09 ~ 2011-09 | 2006-07 ~ 2011-07 2009-09 ~ 2011-09
Number of developers 25 9 9
Version to apply the proposed approach jEdit-4.3 Columba-1.4 v1.1.0.201109151100-r

Table 7.2: Measures of each subject.

Name jEdit (jEdit-4.3) | Columba (Columba-1.4) | JGIT (jGit-1.1.0)
Class § 952 1506 689
Method § 6487 8745 5334
Attribute f 3523 3967 2989
Link # 26626 23981 18280
Fitness function value 0.023287 0.023117 0.021357

e They are written in Java; our proposed method applies to object-oriented software.
e Their development histories are well-managed in version-control systems.

Table summarizes characteristics and development histories of each subject. In addition, measures of each
subject—the classes, method, attributes, links (i.e., associations), and fitness function values—are presented in
Table[Z.2l

To apply the proposed approach on each subject, one version of the source code is selected as input data (as
the last row in Table [7.I). It is important to mention that we select a version after which major changes have
occurred. We also do not select the early version because, at that time, the software is unstable, and meaningless

changes may occur frequently. In short, we take into account a mature version.

Performing the Dynamic Profiling

To obtain dynamic information of the dependencies of entities, dynamic profiling is performed by executing
the selected version of the program of each subject according to its user scenarios or operational profiles. In this
experiment, the user scenarios or operational profiles data are not available, since the subjects are chosen from
open source projects. Therefore, the dynamic information is obtained by executing the programs from various
users who exhibit normal behavior in using the programs. To obtain more reliable dynamic profiling results, we set
specific criteria for use of software regarding characteristics of users, experimental environment, or experimental
conditions. Note that we do not take into account abnormal or extraordinary scenarios, because they may result in
suggesting refactorings in parts not actually in use. For example, for jEdit, we do not log the bootstrapping part

of the editor; we profile only the editing part. Similarly, for Columba, we do not log the initializing part of the

—38 —

e-mail client, but only functions such as retrieving messages from a mailbox, composing messages, and submitting
messages to a server. In the following, for each subject, we present the criteria and the rationale for using it.
jEdit [49] is a java-based text editor which is developed for using the same editor on different platforms or
operating systems. It also provides very common graphic user interfaces like other text editors. Since it provides
only one interface, GUI, we set the criteria of the experimental condition: characteristics of language (natural
language and formal language) and length of written text (long and short). To detect typos while editing the natural
language, the text editor should search an entire dictionary that is rather big; while a typo on the formal language
(e.g., programming language) can be relatively easily detected. On the other hand, for a long description, the users
tend to change the structure of the description while writing the description. However, for a short description,
like a short e-mail message, the description is written without revision. The dynamic profiling was conducted as

follows.

- Long description with formal language: C and python server code, 2 days, 1 man.

Short description with formal language: html, python, 1 day, 2 men.

- Long description with natural language: latex, 2 days, 1 man.

Short description with natural language: E-mail message, 1 day, 2 men.

Columba [20] is an E-mail client program implemented using Java. It supports standard protocols—POP3
and IMAP4—for e-mail clients and provides usual GUI features, such as showing the list of received and sent mails
and e-mail composition. According to the interfaces which Columba has, we set the criteria of the experimental
condition: network protocol and GUI. For the network protocol, we take into account POP3 and IMAP4. As we
mentioned above, the GUI is composed of three common mail client actions, and we distinguish read-intensive
users and write-intensive users. By observing the usage pattern of the users, we found that the graduate school
students tended to be read-intensive users, while the business people tended to be write-intensive users, relatively.
Therefore, we chose the two user groups for realizing the experiment condition. The dynamic profiling was
conducted for four days with six graduate school students and six business men working in a venture company.
Since all of them used the G-mail, they used the Columba with the POP3 on first two days and then they used it
with the IMAP4 on next two days.

JGIT [52] is a java implementation of git, which is a well-known distributed version control system. The
git provides very complex version control operations, such as three-way merging, cherry-picking, and rebase.
Moreover, the git uses various protocols: https, ssh, or git. Among those functionalities, the JGIT does not
provide all of them, but only provide core functionalities: clone, push, commit, fetch or branch. In fact, usage
pattern of JGIT may be varied by the habit of the user. For example, some developers prefer the small commit and
big push, while some other developers prefer the big commit and big push, and few developers prefer the small
commit and small push. On the other hand, some users does not use commit or push functionalities, but only use

clone and fetch—of course, these developers do not use branch. The dynamic profiling was conducted for three

-39 —

days by three developer and one manager of the venture company as follows.

e Each of three developers has characteristics as follows:

- Domain: server side; language: Erlang and Python; commit interval: short; push interval: short; clone or

pull interval: rare

- Domain: client side (i0S); language: objective-C and C; commit interval: short; push interval: long; clone

or pull interval: rare

- Domain: client side (Android); language: Java and C; commit interval: long; push interval: long; clone or

pull interval: rare
e The manager’s characteristics are as follows:

- Domain: server, client, and library side; language: Java, objective-C and C; commit interval: long; push

interval: long; clone or pull interval: short.

Extracting Changes

Table 7.3: Examined range of revisions.

jEdit Columba JGIT
18000 ~ 19000 | 300 ~ 450 | 1 ~ 1616

For each subject, real changes—that had occurred within the examined revisions of the development history—
are extracted. We examined the revisions (as in Table that had been made after the selected version. The
changed methods include method body changes as well as method signature changes, such as changes in name,
parameter, visibility, and return type.

To test hypothesis 1, the changed methods across the revisions are added to the list of changed methods,
which is used as the input for change impact analysis. Note that the methods in the list of changed methods can
be redundant to take into account the effect of their frequency of occurrences. To test hypothesis 2, the set of
changed classes—which are the owner classes of those changed methods—and the corresponding number (i.e.,
frequency) of changes for those classes are used to be compared with extracted classes as refactoring candidates.
The procedure used for extracting the list of changed methods is as follows. First, we retrieve the source code in
which each revision occurred. Next, we analyze files in the source code for each revision to obtain the following

information.

abstract_java abstract_java is a function such that:

(rev_number, file_name) — a set of file_info_entry

—40—

file_info_entry file_info_entry is a tuple such that:

(start_line_number, end_line_number, class_name, method_name)

Then, we use Diff and obtain changed line numbers.

line_change line_change is a function such that:

(former_rev_number, latter_rev_number, file_name) — changed_line_number

Finally, using these changed line numbers, we can obtain the changed methods which had been changed across

the revisions.

7.3 Evaluation Design
RQ1: Effect of Dynamic Information for Cost-Effective Refactoring Identification

Before explaining the experimental design of RQ1, we clearly provide the definition of cost-effective refac-
torings. Cost-effectiveness of applied refactorings can be explained as maintainability improvement over invested
refactoring effort (cost). Therefore, it can be said that refactoring X is more cost-effective than refactoring Y,
when maintainability improvement in relation to the invested effort of applying refactoring X is larger than that of
applying refactoring Y. By using cost-effective refactorings, the less effort of applying refactorings is required to
accomplish the same maintainability improvement.

For RQI, which aims to investigate whether dynamic information is helpful in identifying cost-effective
refactorings that fast improve maintainability and lead to high rate of maintainability improvement, we use the
method of change simulation. We compare the results of change simulation to observe how quickly the number
of propagated changes is reduced on the refactored models whose applied refactorings are identified using the

following three comparison groups.
1. The approach using dynamic information only (group 1)
2. The approach using static information only (group 2)
3. The combination of the two approaches (group 3)

For each subject, refactorings are identified from three comparison groups as follows. (1) In group 1, for
each iteration of refactoring identification process, 180 refactoring candidates (i.e., 18 rules [6 types of scoring
functions x 3 types of refactorings] x 10 top refactoring candidates) are assessed. In this experiment, the cutline
number—the threshold number for limiting the consideration set of refactoring candidates—is set to 10. The
best refactoring is selected and applied. We continue to perform the refactoring identification process until no
more refactoring candidates for improving maintainability are found. At last, we obtain a sequence of refactor-

ings. (2) Group 2 follows the same approach of the group 1 but substitutes the DMCs with SMCs (i.e., using

_4]1—

static measures instead of dynamic measures) in the refactoring-candidate extraction rules and the maintainability
evaluation function for extracting and assessing refactoring candidates, respectively. (3) In group 3, the consid-
ered refactoring candidates are the ones extracted from both approaches—refactoring candidates from group 1 |
refactoring candidates from group 2—and the best refactoring is selected and applied in an iterative way (with the
same method of our study). The approach of group 2 is to test the effect of using dynamic information, and the
approach of group 3 is to test whether the dynamic information can be additional or complementary information
to the static information. Note that the aim of this test is not to compare the performance of the approach of using
dynamic information versus the approach of using static information but to investigate the effect of using dynamic
information for identifying cost-effective refactorings.

Change simulation. To assess the capability of refactorings for maintainability improvement, we use the change
simulation method. The basic idea is to inject changes—extracted as real changes that have occurred during
software maintenance—and then obtain propagated changes by performing change impact analysis. We call the
former change the original change and the latter change the propagated change. This evaluation method is based
on the belief that propagated changes indicate how the design can withstand original changes; in other words, the
more easily the design accommodates changes, the fewer propagated changes will occur. Therefore, the capabil-
ity of refactorings for maintainability improvement is measured by the reduced number of propagated changes.
For performing change simulation, the list of changed methods (explained in subsection is used as original
changes (input for change impact analysis). Then, change impact analysis is performed on each of the refac-
tored model—produced by every application of a sequence of refactorings—to obtain propagated changes (output
for change impact analysis). Change impact analysis is the method to identify the potential consequences for a
change; therefore, the propagated changes are computed by taking the directly and indirectly affected methods
from the method. Change impact analysis used in the experiment is implemented as follows. For each method
in the list of changed methods, the propagated methods, that refer to this method but are defined in other classes,
are retrieved. Note that the change impact analysis is performed in the batch processing mode. Subsequently, the
propagated methods or classes—the owners of the propagated methods—are accumulated for all the methods in
the list of changed methods. The two-steps of indirect propagated methods are considered using the weight value
of 0.5, while the direct propagated methods use the weight value of 1.

Two indicators for cost-effective refactorings. The cost-effectiveness of the identified refactorings can be evalu-
ated by observing how fast the number of propagated changes is reduced. In our approach, we assume that invested
refactoring effort (cost) is the number of applied refactorings. We notice the limitation of estimating refactoring
cost as the number of applied refactorings; to more accurately estimate refactoring cost, we need to consider the
effort needed to perform the activities of the entire refactoring process. We deal with this issue in the discussion
chapter [8| Two indicators are used: (1) the percentage of reduction for propagated changes and (2) the rate of
reduction for propagated changes. The indicators can be calculated as follows. Let r,, represent the n'” applied
refactoring. Let the number of propagated changes for accommodating changes on the initial profiled model be

ico, 1Clqs¢ ON the design applying all the identified refactorings from the first to the last refactoring, and ic,, on

_42 —

the design applying a sequence of identified refactorings ry, ..., r,. The percentage of reduction for propagated

changes (percntRPC) of 1y, is as below.

icy — icp

perentRPC(ry,) = x 100,

ico — min{icigst }

where min{z} returns the minimum number of propagated changes among all comparison groups, which is
needed for normalization. The rate of reduction for propagated changes (rate RPC)) between r,,, and r,,, when r,,
precedes r,,, is calculated by the differences of percentage of reduction for propagated changes over the number

of applied refactorings as below.

percntRPC(ry,) — perent RPC(ry,)
te RPC (1,) = - -
rateRPC(rm,n) # of applied refactorings between r, and T, .

In this experiment, the rate of reduction for propagated changes is considered for every applied refactoring; there-
fore, it can be represented as to percnt RPC(ry,) — percnt RPC(r,_1), since the number of applied refactorings

between refactorings is 1.

30 120
25—\ 100
20 \ 80
15 \ 60

ol N\ ol
NN

1 2 3 4 5 6 7 8 9 10 11 12 123 456 7 8 9 10111213 17 19 20 21 22 26 35 43 49

—
| "]

(a) jEdit (b) Columba

1 4 7 10 13 16 19 22 26 30 34 37 40 45 48 55 59 65 74 78 85 94 99 106121153231280357778

(c) JGIT

Figure 7.1: Change distribution graph (X-axis: f of occurred changes for each class, Y-axis: f of corresponding

classes)

—43 -

RQ2: Effect of Dynamic Information for Extracting Refactoring Candidates in Frequently Changed Classes

The underlying assumption of our approach is that changes are more prone to occur in the pieces of codes the
users more often utilize and that, hence, applying refactorings in these parts would fast improve maintainability of
software. For this reason, we extract refactoring candidates in the entities—involved in given scenarios/functions
of a system—in a way that reduces dependencies of those entities.

To validate the assumption, we test RQ2, which aims to investigate whether dynamic information is helpful
in extracting refactoring candidates in the classes where real changes had frequently occurred. For each subject,
we compare a) the classes of the top 10%, 20%, 30% and 100% (i.e., all changes) most frequently changed during
the real development history (explained in subsection with b) the classes of refactoring candidates extracted
from the approach using dynamic information and the approach using static information, respectively, to observe
how many classes extracted as refactoring candidates are found in real changed classes. In addition to all changes,
we consider top k% (k = 10, 20, 30) most frequently changed classes to examine the capability of each approach
for extracting refactoring candidates from highly-ranked frequently changed classes. We have considered up to
the top 30% most frequently changed classes, because, for three subjects—jEdit, Columba, and JGIT—most of the
changes occur in those changed classes (see Fig. [7.T). For instance, the ratio of the number of occurred changes
in the top 30% most frequently changed classes over the total number of occurred changes in changed classes is
143 out of 207 = 70%, 788 out of 993 =~ 80%, and 8754 out of 9773 =~ 90%, for jEdit, Columba, and JGIT,
respectively. Note that, as with RQ1, the aim of this test is not to compare the performance of the approach of
using dynamic information versus the approach of using static information but to investigate the effect of using
dynamic information for extracting refactoring candidates in the frequently changed classes.

We use the classes of refactoring candidates that are obtained from group 1 (i.e., the approach using dynamic
information only) and group 2 (i.e., the approach using static information only) in RQ1. The lists of the extracted
classes as refactoring candidates for each approach and the list of real changed classes are ranked in a descend-
ing order according to the number of occurred changes for each class. Let the ranked list of the top £% most
frequently changed classes be rank K Changed, the ranked list of the classes extracted as refactoring candidates
for group 1 be rank Dynamic, and the ranked list of group 2 be rankStatic. By comparing rankK Changed
with rankStatic and rank Dynamic, we first obtain (1) commonly found classes (i.e., intersect set). We then
obtain (2) the two distance measures (K: Kendall’s tau, F: Spearman’s footrule [27]]), which are the measures for

comparing similarity of two top k lists.

RQ3: Effect of Multiple Refactorings

To investigate the effect of multiple refactorings (RQ3), we compare our approach—whose refactoring can-
didates are from both top-down and bottom-up approaches, (1) Collapse Class Hierarchy refactorings (i.e., big
refactorings) and Move Method refactorings identified from the rule-based identification and (2) MISs, which
should be supported on assessment and impact analysis of elementary refactorings—with the approach whose

refactorings candidates are only (1). To evaluate the capability of the selected refactorings for maintainability

_44 —

MSCyg — MSCyin
MSCmaa: — MSszn

fitness =

DCavg - Dszn SCa'Ug - Sszn Dcsavg - Dcsmzn SCSavg - Scsmzn

b Dcmaz - Dszn * 2 SCmar - Sszn * s Dcsmam - Dcsmzn T Scsmaz - Scsmzn

Figure 7.2: Maintainability evaluation function for producing fitness value.

improvement, we use the maintainability evaluation function [38] as a fitness function to measure maintainability
of the refactored design.

Maintainability evaluation function. In search-based approaches, to combine multiple objectives into a single-
objective function, methods such that (1) metrics for each objective are normalized, weighted, and added up
[81, 161], or (2) Pareto optimality [43]], are used. We adopt the former approach for conflating two objectives of
metrics—high cohesion and low coupling—into a single fitness function. We design the maintainability evaluation
function as (cohesion / coupling), because the maintainability evaluation function of this design produces larger
fitness values as the software gets more maintainable (with higher cohesion and lower coupling). In addition,
the two objectives may conflict in many cases, and the maintainability evaluation function of this design prevents
merging of unrelated units of codes, which reduces couplings but lowers cohesion.

Fig. shows the formulation of the maintainability evaluation function, which produces the fitness value
of the refactored model. Each metric is normalized in the following way: the difference between the average
and minimum values is divided by the difference between the maximum and minimum values of the metric. The
average value of the metric is obtained by summing all the values of the classes and dividing this by the number
of classes. For composing all coupling metrics, weight values, whose total sum is one, are multiplied to each
normalized coupling metric, then all the normalized coupling metrics are added up. Note that by using the weight
values, a user can decide to focus on certain aspects of the maintainability evaluation function. In our approach,
we assign a weight value of 0.25 for each coupling metric.

In the following, each metric—constituting the maintainability evaluation function—is explained. For co-
hesion, the Method Similarity Cohesion (M .SC) [11] metric is used. In this metric, the similarity for all pairs
of methods are integrated and normalized to measure how cohesive the class is. Its difference from the other
cohesion metrics is that it considers degree of similarity between a pair of methods in a class. For instance, Lack
of Cohesion in Methods (LCOM) [[18]] does not account for the degree of similarity between methods; instead, it
categorizes the sets into two groups—empty and non-empty—and produces the same results for a pair of methods
whether it has one instance variable or all instance variables shared in common. Another cohesion metric, Cohe-
sion Among Methods in Class (CAMC) [7], is not considered, because this metric only deals with the parameter

types (not usage of instance variables or methods). M SC for a class C'is calculated as follows:

n(n—1)

MSC(C) = —2— % ?‘22
=1

n(n —1)

—45—

where class C has n methods, and for a pair of methods, IV . and IV stand for the common (i.e., intersect set)

and total instance (i.e., union set) variables used by the pair of methods repeatedly. Since there are @ distinct

LIVl
[1V]:

combinations of pairs of methods in a class, ¢ ranges from 1 (i.e., first pair) to w (i.e., last pair), and
indicates the similarity of the pair of methods, respectively.

For coupling, four coupling metrics—defined based on the DMCs as well as the SMCs—are used. The size
of the DMC:s in both directions for all methods in a class C' is defined as Dynamic Coupling (DC). DC can be

specified as

DC(C) =Y _|DMC(m;, <)| + |[DMC(m;, =),

m;

where every method m in class C'. In the same way, the size of SMCs, measured on a method between caller and
callee classes, in both directions for all methods in a class C, is defined as Static Coupling (SC); SC' can also
be specified based on SMCs. Let SM C'(e, §) denote the list of SMCs retrieved in respect to the entity € and the
direction ¢ likewise DM C'(e,). Then, SC' can be specified as

SC(C) =Y |SMC(my, <)| + [SMC(my, -)),

my

where every method m in class C. The modified versions of DC and SC are defined and named DC and SC*
by converting from lists into the set of DM C and SM C. In other words, redundant elements are eliminated from
the lists of DM C'and SM C for degrading the effect of strength of dependencies; therefore, only distinct elements
remain in the set of DM C*® and SM C*. Each of the defined coupling DC® and SC* is specified as follows.

m;

SCH(C) =Y " |SMC® (mi, <)| + |SMCS (m;,).

my

It is worth to mention that we have considered four couplings which capture 8 types of combination: (dynamic
method call vs. static method call) x (import direction vs. export direction) x (distinct methods [set] vs. all
invoked methods [list]). They cover not only many well-known coupling metrics but also additional features
(i.e., dynamic aspects). For instance, Message Passing Coupling (MPC) [S7] counts static method calls for all
invoked methods in the import direction, and Request For a Class (RFC) [18] counts static method calls for
distinct methods in the import direction, while Coupling Between Objects (CBO) [[18] counts static method calls
for distinct methods in both directions. The coarse-grained metrics, such as Coupling Factor (CF) [13], are not
considered, because they are measured based on the number of coupled classes, not on the methods. All the
mentioned coupling metrics capture only static aspects, which are based on static method calls that can be obtained

by analyzing source codes without running a program.

— 46—

Table 7.4: Fitness function values of the original design.

jEdit Columba jGit
Fitness fn. | 0.023287 | 0.023117 | 0.021357

Table[7.4]shows the fitness function values of the original design (i.e., before applying selected refactorings).
For measuring the costs of computation and search space exploration of the approach, we use the number of
iterations for the selection process and the elapsed time. The elapsed time is measured under following conditions:
processor 1.8GhHz Intel Core i5, Memory 8G 1600 MHz DDR3, Graphic Intel HD Graphics 4000 512MB, and
Software OS X 10.8.2. We compare the two approaches on fitness function values (maintainability improvement),

the number of iterations, and the elapsed time (computation cost and search space exploration cost).

RQ4: Effect of the RED

To investigate the effect of the RED (RQ4), we compare the approach considering the RED (our approach)
with the approach without considering the RED. We compare these two approaches on fitness function values
(maintainability improvement) as well. To analyze the different results of the two approaches, the accumulated
deviation is measured as follows.

fiterations

Z |Expected; — Actual;),
i=0

where Expected; and Actual; are expected and actual maintainability (i.e., external links assessed in the refac-

toring effect evaluation framework) on i-th iteration, respectively.

7.4 Results

7.4.1 Dynamic Information-based Identification of Refactoring Candidates

RQ1: Effect of Dynamic Information for Cost-Effective Refactoring Identification

The results are represented in Fig. [7.3] Fig. [7.4] and Fig. [7.5]for jEdit, Columba, and JGIT, respectively;
the x-axis shows each applied refactoring, and the y-axis shows the number of propagated changes of methods
or classes to accommodating original changes. In addition, Table summarizes the percentage of reduction
for propagated changes (i.e., methods) and the rate of reduction for propagated changes (i.e., methods) for each
applied refactoring.

For jEdit, as in Fig. and Fig. the same number of propagated changes is reduced for all
approaches in the first applied refactoring. However, from the next applied refactorings, the approaches using
dynamic information (group 1 and group 3) reduce the number of propagated changes faster than the approach
using static information only (group 2) does. For this reason, to reach the same number of reduced propagated

changes—for example, where the percentage of reduction for propagated changes is around 72% ~ 75%—the

—47 -

required numbers of refactoring application are 5, 6, and 7 for group 3, group 1, and group 2, respectively. As a
result, the average rate of reduction for propagated changes of all nine of applied refactorings for the approaches
using dynamic information (group 1 and group 3) are higher than that of the approach using static information
only (group 2). For instance, the average rates of reduction for propagated changes of all nine applied refactorings
are 11.11%, 10.56%, and 9.44% for group 3, group 1, and group 2, respectively. Furthermore, at the final solution,
where propagated changes do not drop anymore, the number of reduced propagated changes of the approaches
using dynamic information (group 1 and group 3) is greater than that of the approach using static information only
(group 2). For instance, when positing the total percentage of reduction of propagated changes for the combination
of the two approaches (group 3) as 100%, then those for group 1 and group 2 are 95% and 85%, respectively.

For Columba, as in Fig. and Fig. the approaches using dynamic information (group 1 and
group 3) also reduce the number of propagated changes much faster and bigger than the approach using static
information only (group 2) does. For this reason, as in jEdit, to reach the same number of reduced propagated
changes—for example, where the percentage of reduction for propagated changes is around 75% ~ 76%—the
required numbers of refactoring application are 4, 6, and 10 for group 3, group 1, and group 2, respectively. As a
result, for instance, the average rate of reduction for propagated changes of all 11 applied refactorings are 9.09%,
7.67%, and 7.10% for group 3, group 1, and group 2, respectively. In addition, when positing the total percentage
of reduction for propagated changes for the combination of the two approaches (group 3) as 100%, then those for
group 1 and group 2 are 85% and 78%, respectively. It is also worth mentioning that in Columba, the absolute
scale of reduction for propagated changes is relatively small, because there are not many revisions to be retrieved.
Referring to the report period (in Table[7.1]), we assume that the maturity level of the development for Columba is
relatively lower than jEdit, and Columba may still be in the development process. In fact, jEdit has been developed
and maintained for over ten years. Furthermore, the developers are much smaller, while the size of the program is
much bigger than jEdit’s; they may not have exerted as much effort for the revisions as jEdit does.

For JGIT, as in Fig. and Fig. group 1 reduces the number of propagated changes faster than
group 2 does, though only from the fourth to the eighth applied refactorings. Even at the final solution, the number
of reduced propagated changes of group 1 is smaller than that of group 2. As a result, for instance, the average
rate of reduction for propagated changes of the total of 12 applied refactorings are 8.33%, 5.13%, and 6.85% for
group 3, the group 1, and group 2, respectively. In addition, when positing the total percentage of reduction for
propagated changes for combination of the two approaches (group 3) as 100%, then those for group 1 and group
2 are 62% and 82%, respectively.

As opposed to the results with jEdit and Columba, with JGIT, group 1 does not outperform group 2. By
analyzing the revision history and source codes of JGIT, we found the following observations that can explain
this result. JGIT is a distributed source version control system and provides many special features for working
in a distributed environment with high speed. Since the most common use of scenarios for using version control
systems are committing, pushing, cloning, or pulling a file into a repository, we have mostly captured these normal

scenarios when performing dynamic profiling. However, real changes—which had occurred in the examined

_48 —

Table 7.5: Indicators of cost-effective refactorings: (1) Percentage of reduction for propagated changes, (2) Rate

of reduction for propagated changes for jEdit, Columba, and JGIT.

jEdit
Percentage of reduction for propagated changes (%) Rate of reduction for propagated changes (%)
f of applied refactoring | Dynamic + Static | Static | Dynamic | f of applied refactoring | Dynamic + Static | Static | Dynamic
1 30 30 30 1 30 30 30
2 42.5 37.5 40 2 12.5 75 10
3 50 425 52.5 3 75 5 12.5
4 60 475 60 4 10 5 75
5 72.5 60 65 5 12.5 12.5 5
6 82.5 60 71.5 6 10 0 12.5
7 90 75 85 7 75 15 7.5
8 95 85 90 8 10 5
9 100 85 95 9 5 0 5
Average 69.17 58.06 66.11 Average 11.11 9.44 10.56
Columba
Percentage of reduction for propagated changes (%) Rate of reduction for propagated changes (%)
f of applied refactoring | Dynamic + Static | Static | Dynamic | f of applied refactoring | Dynamic + Static | Static | Dynamic
1 31.3 6.3 31.3 1 313 6.3 31.3
2 46.9 234 43.8 2 15.6 17.2 125
3 59.4 359 50.0 3 12.5 12.5 6.3
4 75.0 453 65.6 4 15.6 9.4 15.6
5 84.4 57.8 73.4 5 9.4 12.5 7.8
6 87.5 65.6 76.6 6 3.1 7.8 3.1
7 89.1 70.3 78.1 7 1.6 4.7 1.6
8 922 73.4 79.7 8 3.1 3.1 1.6
9 96.9 75.0 81.3 9 4.7 1.6 1.6
10 98.4 76.6 82.8 10 1.6 1.6 1.6
11 100.0 78.1 84.4 11 1.6 1.6 1.6
Average 78.27 55.26 67.90 Average 9.09 7.10 7.67
JGIT
Percentage of reduction for propagated changes (%) Rate of reduction for propagated changes (%)
t of applied refactoring | Dynamic + Static | Static | Dynamic | f of applied refactoring | Dynamic + Static | Static | Dynamic
1 9.46 9.46 2.23 1 9.46 9.46 2.23
2 14.33 14.33 3.01 2 4.87 4.87 0.78
3 18.88 18.74 12.48 3 4.55 441 9.47
4 28.71 21.57 21.43 4 9.83 2.83 8.95
5 48.70 23.79 43.74 5 19.99 222 22.31
6 51.53 27.78 45.55 6 2.83 3.99 1.81
7 57.98 30.98 51.30 7 6.45 3.20 5.75
8 60.76 40.21 51.95 8 2.78 9.23 0.65
9 81.26 63.96 52.50 9 20.50 23.75 0.55
10 92.72 75.05 56.63 10 11.46 11.09 4.13
11 93.60 77.50 61.54 11 0.88 2.45 491
12 100.00 82.24 61.54 12 6.40 4.74 0.00
Average 54.83 40.47 38.66 Average 8.33 6.85 5.13

—49 _

revisions of the development history for JGIT—are related to developing and correcting errors of the algorithms
that are not frequently used but contain critical functions, and the complexity of these algorithms is high. An
example of such algorithms is packing; JGIT stores each newly created object as a separate file, and this takes
a great deal of space and is inefficient. Thus, periodic packing of the repository is required to maintain space
efficiency, which requires very complex computation. For the reasons stated above, in JGIT, group 1 may rarely
identify refactorings on those parts of the algorithms; thus, the percentage of reduction for propagated changes and
the rate of reduction for propagated changes are rather small. However, the combination of the two approaches
(group 3) still outperforms the approach using static information alone (group 2). It is obvious that some of the
refactoring candidates—not identified in the approach using static information (group 2) and only identified in the
approach using dynamic information (group 1)—contribute to improving maintainability even faster. Here, these
two approaches are mutually complementary; thus, it can be said that using the dynamic information in addition
to the static information helps to improve maintainability even faster.

From the results presented above, we can conclude that, in three subjects—jEdit, Columba, and JGIT—,
dynamic information is helpful in identifying cost-effective refactorings that fast improve maintainability; and,
considering dynamic information in addition to static information provides even more opportunities to identify
cost-effective refactorings because of the refactoring candidates that are uniquely identified by the approach using

dynamic information only.

RQ2: Effect of Dynamic Information for Extracting Refactoring Candidates in Frequently Changed Classes

For each subject, jEdit, Columba, and JGIT, the commonly found classes (i.e., intersect set) of each approach
using static information and approach using dynamic information are represented in Table The intersect set
is represented as (1) the number of the classes (Class f), and (2) the number of occurred changes in those classes
(Change). The asterisk (*) is appended to the results of better solutions (i.e., those in which a greater number
of the classes or a greater number of occurred changes in those classes are commonly found). For two subjects,
jEdit and Columba, in the approach using dynamic information (group 1), more classes—extracted as refactoring
candidates—are found in the classes where real changes had occurred. For JGIT, in the approach using dynamic
information (group 1), more classes—extracted as refactoring candidates—are found only in the classes of top
10% and 20% most frequently changed.

On the other hand, the two distance measures (K: Kendall’s tau, F: Spearman’s footrule [27]]) of the approach
using static information and the approach using dynamic information are represented in Table The distance
measures count the number of pairwise disagreements between two top k-ranked lists. Therefore, the larger the
distance, the more dissimilar the two top k ranked lists are; conversely, the smaller the distance, the more similar
the two top k-ranked lists are. The asterisk (¥) is also appended to the results of better solutions (i.e., those
with the smaller distance measures). Likewise the results in the commonly found classes, for two subjects, jEdit
and Columba, in the approach using dynamic information (group 1), the ranked lists of classes—extracted as

refactoring candidates—are more similar to the ranked list of the real changed classes. For JGIT, in the approach

—-50 -

Table 7.6: Commonly found classes between the real changed classes and the extracted classes as refactoring

candidates for each approach using static information and approach using dynamic information.

jEdit

Changed Static N Changed Dynamic N Changed
Top % Class t Change f Class { Change { Class f Change f
10.00% 7 67 6 60 7* 67*
20.00% 16 110 7 64 10* 79*
30.00% 27 143 9 70 12* 85*
100.00% 72 207 19 82 21* 99*

Columba

Changed Static N Changed Dynamic N Changed
Top % Class Change f Class f Change f Class Change f
10.00% 27 458 9 220 14* 269*
20.00% 55 624 13 241 15* 275*
30.00% 79 788 16 251 17* 282*
100.00% 265 993 22 260 24* 292*

JGIT

Changed Static N Changed Dynamic N Changed
Top % Class f Change f Class Change { Class f Change f
10.00% 20 5039 9 2872 10* 2899*
20.00% 50 7296 19 3709 22* 3758*
30.00% 91 8754 27* 3992* 26 3938
100.00% 258 9773 44+ 4109* 33 3998

1 The asterisk (*) is appended to the results of better solutions (i.e., those in which

a greater number of the classes or a greater number of occurred changes in those classes are commonly found).

Table 7.7: Top k ranking distance measures (K: Kendall’s tau; F: Spearman’s footrule [27]) between the real

changed classes and the extracted classes as refactoring candidates for each approach using static information and

approach using dynamic information.

jEdit Columba JGIT
Changed Static Dynamic Static Dynamic Static Dynamic
Top % K F K F K F K F K F K F
10.00% 68.5 69 53* 52% 397 207 258.5* 177* 1779.5 695 1284.5% | 449.25*
20.00% 158 69.25 129.5% 65.25% 1000.5 712 791* 659* 3494 1198.25 2702* 1026*
30.00% 256.5 105 194* 96* 1785 1653 1617.5* 1520* 4411.5* 2099* 5489.5 2199.25
100.00% | 1229 | 1329.25 | 1003.5* | 1196.25* 15857 | 19824 | 15655.5% | 19328* | 26499* | 22752* 29623 22974.25

1 The asterisk (*) is appended to the results of better solutions (i.e., those with the smaller distance measures).

_51—

using dynamic information (group 1), the ranked list of classes—extracted as refactoring candidates—are more
similar only to the ranked lists of the top 10% and 20% most frequently changed.

The results presented above in three subjects—jEdit, Columba, and JGIT—show that dynamic information
is helpful in extracting refactoring candidates in the classes where real changes had occurred. In addition, overall,
the approach using dynamic information even outperforms the approach using static information for finding fre-
quently changed classes. Even though the former approach is not always better than the latter approach, we find
that the correlation does exist between the frequently changed classes and the classes of refactoring candidates
extracted from the approach using dynamic information. The results offer promising support for using dynamic
information for extracting refactoring candidates from highly-ranked frequently changed classes, and, further,
that using dynamic information in addition to static information can be a great help for cost-effective refactoring

identification.

7.4.2 RED-aware Grouping of Multiple Elementary Refactorings
RQ3: Effect of Multiple Refactorings

Table[7.8|summarizes the results of which each approach has reached to the final solution (i.e., no more refac-
torings that improve maintainability are found): fitness function values (maintainability improvement), the number

of iterations, and the elapsed time (computation cost and search space exploration cost) for jEdit, Columba, and

JGIT, respectively. The graphs in Fig. are presented to show the visual results. In all three projects, the fitness

Table 7.8: Results of the effect of multiple refactorings.

Subject Comparators Fitness fn. | Computation cost and search space exploration cost
Iteration (f) Elapsed Time (sec)

jEdit Rulebased_RCs only 154 0.030322 431.89
Our approach 23 0.032312 241.12

Columba | Rulebased_RCs only 220 0.036951 581.53
Our approach 41 0.038132 205.74

jGit Rulebased_RCs only 43 0.022549 198.77
Our approach 72 0.026701 232.68

T Rulebased _RCs: Refactoring Candidates from Rule-based Identification.
1 Rulebased_RCs only: approach without MISs.
1 Our approach: approach with Rulebased_RCs + MISs.

function values of our approach (the approach of selecting multiple refactorings) are greater than the approach of
refactoring identification using the Rule-based_RCs only (without MISs): jEdit (0.032312 > 0.030322), Columba
(0.038132 > 0.036951), and jGit (0.026701 > 0.022549). In addition, the total number of iterations and taken
time to reach to the solution of our approach is much lesser than the approach of refactoring identification us-

ing the Rule-based _RCs only (without MISs): f of iterations—jEdit (23 < 154) and Columba (41 < 220); time

32—

Table 7.9: Results of the effect of the RED.

Subject | Comparators | Fitness fn. | Accumulated Deviation
jEdit Not_RED 0.032379 9246
Our approach | 0.033472 0
Columba Not_RED 0.030720 40758
Our approach | 0.037123 0
jGit Not_RED 0.023602 13058
Our approach | 0.028192 0

1 Not_RED: approach without considering the RED.
1 Our approach: approach considering the RED.

(sec)—jEdit (241.12 < 431.89) and Columba (205.74 < 581.53).

We take a close look the graphs in terms of the number of iterations (Fig. [7.7). The graphs of jEdit (Fig.
[7.7(a)), Columba (Fig. [7.7(b)), and JGIT (Fig. [7.7(c)), present the results of the effect of multiple refactorings
on the number of iterations, respectively; the x-axis shows the number of iterations, and the y-axis shows the
fitness function values (cohesion / coupling). In both jEdit and Columba, fitness function values grows fast in our
approach; in contrast, the approach of refactoring identification using the Rule-based_RCs only (without MISs)
grows gradually. It takes certain overhead of computing MISs in the first procedure of selection for multiple
refactorings (denoted as the processing time in the graph). However, the benefit of reduced time overcomes this
overhead.

In jGit, the approach of refactoring identification using the Rule-based_RCs only (without MISs) faces the
local optimum problem. By examining the logged results, we found the following observation. First, during
the iterative process of refactoring selection, the approach of refactoring identification using the Rule-based_RCs
only (without MISs) selects the refactorings in the same place. Thus, the second best refactoring rarely selected.
In contrast, our approach selects refactorings globally, which helps to prevent this problem. Second, in the ap-
proach of refactoring identification using the Rule-based_RCs only (without MISs), it kills the other Move Method
refactoring opportunities. Sometimes, a group of smaller pieces of refactorings are useful, as in our approach.

From the results, we can conclude that our approach selects refactorings that lead the software design to
reach higher fitness function values (better improve maintainability) with smaller costs (i.e., smaller search space
exploration cost and shorter time). Even though it takes certain overhead of computing MISs at the very beginning
of our approach, the benefit of reduced cost overcomes this overhead. Furthermore, in some project, the approach
of refactoring identification using the Rule-based_RCs only (without MISs) may face the local optimum problem.

Our approach tends to have better performance in avoiding local optimum by selecting refactorings globally.

—53 -

RQ4: Effect of the RED

Table summarizes the results of which each approach has reached to the final solution (i.e., no more
refactorings that improve maintainability are found): fitness function values (maintainability improvement) for
jEdit, Columba, and JGIT, respectively. In all three projects, the fitness function values of our approach (the
approach considering the RED) are greater than the approach without considering the RED: jEdit (0.033472 >
0.032379), Columba (0.037123 > 0.030720), and jGit (0.028192 > 0.023602). To explain the different results of
the two approaches, the deviation between actual and expected maintainability (i.e., external links assessed in the
refactoring effect evaluation framework) is measured for each iteration of the selection process and accumulated.
The accumulated deviations of the approach without considering the RED are 9246, 40758, and 13058, for jEdit,
Columba, and jGit, respectively. It can be interpreted that to this amount, the approach without considering the
RED miscalculates the maintainability of the suggested groups of refactorings; and the group of refactorings that
does not mostly improve maintainability could be selected.

From the results, we can conclude that when selecting multiple refactorings, considering the RED on is
important to correctly identify the group of refactorings that best improves maintainability. Even though the

refactorings are not syntactically dependent, the RED should be considered when selecting multiple refactorings.

7.5 Threats to Validity

We assume that the cost of each refactoring is the same; therefore, the number of applied refactorings is
regarded as the refactoring cost (effort). However, the number of applied refactorings does not actually reflect
the effort required to apply them. For practical use of our approach, several factors need to be considered. More
detailed discussion is provided in the next subsection.

The capability of identified refactorings for maintainability improvement is assessed by using the change
simulation method. In the experiment, we obtained changes from the change history for the input of the change
impact analysis. For changes obtained from the change history, it would be good to extract intentional changes by
excluding ripple effects—that the intentional changes necessitated—among the obtained changes, perform change
impact analysis for those intentional changes, and compare the results of change impact analysis. However,
discernment of intentional changes among the obtained changes is not feasible, because it is nontrivial to identify
whether a change is an intentional change or a ripple effect; therefore, we did not use the intentional changes as
the input of the change impact analysis. Thus, we use the obtained changes (i.e., input as original changes), then
perform change impact analysis to identify the potential consequences (i.e., output as propagated changes) for
those obtained changes.

For implementing change impact analysis, the two-steps of direct and indirect propagated methods are con-
sidered by using different weight values. The further step of indirect propagated methods can be considered.

To evaluate the capability of the selected refactorings, we use the maintainability evaluation function, which

is based on the coupling and cohesion metrics. This maintainability evaluation function fits to our evaluation

— 54—

criteria, because we regard improving maintainability of software as having high cohesion and low coupling. The
maintainability evaluation function designed for other goals or weighting on the specific criteria may produce
different fitness function values.

When constructing RED-aware graph, more types of dependencies such as structural dependencies can be

considered for grouping entities into sets more precisely.

—55 -

- '\Q\\
120

—— Dynamic+Static(Methods)

170 140
@
[
&
165
e 135
=] R <
® 160 . -
£ \ S 130
8 15 K
£
£ 150
Q
8
c s 5
o -
b "
8 140 V\\ H
S 8 1s
< \ \ 3
GE, 135 P
© \l%\\ 110
2 130
g oo :
-3 k 105
£ 125 b
"6 *
= 120 : : : : : : : : , 100 : :
0 1 2 3 4 5 6 7 8 9 0 1 2

of applied refactorings

—&— Static(Methods) —&— Dynamic(Methods)

—M— Dynamic+Static(Classes)

3 4 5 6 7 8 9
of applied refactorings

—&— Static(Classes) ~ —&— Dynamic(Classes)

(a) Number of propagated methods for accommodating changes on

jEdit

jEdit

Figure 7.3: Change simulation for jEdit.

(b) Number of propagated classes for accommodating changes on

M

N

- 800 660
i1
? 790
©
LN A
¥ 780
E=S .
£ \ \
g i\ \ B e
E 760
1
® \
= 750 H 630
2 2
%) 3
° 740 0
2 b
E] S 620
2NN b
2

720
K] > 610
a E
£ 710 5
s *
® 700 600

0 1 2 3 4 5 6 7 8 9 10 11 0 1
of applied refactorings
—li—Dynamic+Static(Methods) —&—Static(Methods) —&— Dynamic(Methods) ——Dynamic+Static(Classes)

3 4 5 6 7 8 9 10 11
of applied refactorings

—&— Static(Classes) ~ —a— Dynamic(Classes)

(a) Number of propagated methods for accommodating changes on

(b) Number of propagated classes for accommodating changes on

Columba Columba
Figure 7.4: Change simulation for Columba.
175 ., 140
ﬂ)
g
< 170 &\A _F':
: \'\% % 135
5 165 & <
\\\\ 0
160 2
o
= e
o o
% 155 b
° @ 125
o a
< K]
g 150 =
-
120
145 2
= k]
£ 140 * s — B
o 1 2 3 4 5 6 7 8 9 10 11 12 i1 2 3 4 5 6 7 8 9 10 11 12
of applied refactorings # of applied refactorings
—li—Dynamic+Static(Methods) —&—Static(Methods) —#— Dynamic(Methods) ——Dynamic+Static(Classes) —&— Static(Classes) ~ —— Dynamic(Classes)

(a) Number of propagated methods for accommodating changes on
JGIT

Figure 7.5: Change simulation for JGIT.

(b) Number of propagated classes for accommodating changes on

JGIT

—56 —

0.04 2500

2000
1500
1000

500

jEdit Columba jGit jEdit Columba iGit

0.035

0.025

0.02

0.015

0.005

mSingle refactoring = Multiple refactorings (Our approach) u Single refactoring = Multiple refactorings (Our approach)

(a) Fitness fn. (b) 4 of iterations

6000
5000
4000
3000

2000

- L

jEdit Columba jGit

mSingle refactoring m Multiple refactorings (Our approach)

(c) Elapsed time (sec)

Figure 7.6: The effect of multiple refactorings.

—57 -

0.033 1

Our approach:
00321 approach with Rulebased_RCs + MISs

0.0311

, ’ Rulebased_RCs only:
; approach without MISs

0.029

0.028

0.027

0.026

Fitness (cohesion/coupling)

0.025

0.024

0.023
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
of iterations
(a) jEdit
0.04 1
Our approach:
00381 approach with Rulebased_RCs + MISs .-

0.036

0.034 et
Rulebased_RCs only:

approach without MISs
0.032

0.028

Fitness (cohesion/coupling)

0.026

0.024

0.022
0 5 10 15 20 25 30 35 40 45 50 55
of iterations
(b) Columba
0.027
0.0265
0.026
0.0255
0.025

Our approach:
approach with Rulebased_RCs + MISs

0.0245
0.024
0.0235

0.023

Fitness (cohesion/coupling)

Local Optimum

0.0225
Rulebased_RCs only:
0.022 approach without MISs

0.0215 1+

0.021
0

of iterations

(c) JGIT

Figure 7.7: The effect of multiple refactorings on the number of iterations.

—58 —

Chapter 8. Discussion

Some of the researches addressed the method of estimating refactoring cost; for example, Zibran and Roy
[93]] propose a refactoring effort model that takes into account several types of effort needed to remove software
code clones. To more accurately estimate refactoring cost, we need to consider the effort needed to perform the
activities—refactoring identification, refactoring application, and refactoring maintenance—of the entire refactor-
ing process (explained in Section [3)). For refactoring identification, refactoring complexity (e.g., big or small for
code modification, or easy or difficult for understanding context) needs to be considered. It is reasonable to expect
that big refactorings—which consist of a series of small refactorings—would require more effort to be applied
than small refactorings would do, because they should affect larger portion of source codes; and at the same time,
impact of big refactorings on maintainability improvement tends to be larger. For instance, in the experiment—
performed without considering refactoring complexity—, class-level refactorings (i.e., Collapse Class Hierarchy
refactorings) are selected in many cases than method-level refactorings (i.e., Move Method refactorings); because
the impact on maintainability improvement of class-level refactorings tends to be larger than that of method-level
refactorings. If the refactoring complexity of the application is taken into account for estimating refactoring cost,
method-level refactorings may be more selected. Refactoring complexity of the application can be considered by
dividing each refactoring into fine-grained (e.g., atomic-level) transformations and giving each a different weight.
For refactoring application, basically, if we can ensure that applying a refactoring on actual source codes is fully
automated by a tool, then the refactoring cost can be regarded as zero. However, in practice, the application of
refactorings may involve additional costs such as the effort of relocating codes, especially when the refactorings
are complex. Refactoring inspection costs also need to be considered, because it is a human who decides whether
to refactor or not. For instance, the developer or the maintainer needs to take time to decide whether identified
refactorings should be applied or not. Even though the refactorings are beneficial to maintainability improvement,
they could be rejected to be applied due to the confliction with other design practices and principles. Finally, for
refactoring maintenance, the effort involved in testing the refactored code and checking consistency with other
software artifacts needs to be considered.

In the experiment, the main key to obtain a better outcome is how strongly the frequently utilized parts are
correlated with the parts that actually have been changed and how much more refactorings are identified and
applied in those parts. For instance, in jEdit and Columba, changes have occurred in the parts that are often
utilized; while in JGIT, change-occurred parts are not strongly correlated with the frequently used parts. By
examining the changes made to JGIT, we notice that development of system’s main functionalities has almost
been finished; and developers seem to focus on perfective maintenance. It is reasonable that, in this case, changes
can be made to the places dealing with exceptional scenarios or containing functionalities utilized only by high-

end users. Even though the use of frequency is rather low, the importance or complexity of developing such

—59 —

parts can be high. For this reason, for JGIT, other predictors, such as structural complexity (e.g., class size), may
need to be additionally considered to identify better cost-effective refactorings. Nevertheless, it is worth pointing
out that the dynamic information is the important factor for identifying cost-effective refactorings, because the
experimental results show that, the combination of two approaches—the approach using dynamic information and
the approach of static approach—still outperforms the approach using static information alone. We discussed with
senior developers—who work in IT industries over ten years—for interpreting these experimental results. They
support the arguments by providing the following explanations: the system having intensive user interactions
tends to be gradually developed by actively accommodating users’ requests; thus, changes are more likely to be
occurred where users more utilize. On the other hand, the system, which is algorithmic-based and has rather less
interactions with users, tends to be developed in a way of completing each decomposed function; thus, changes
are not likely to be occurred where the development is completed.

We defined a total of 18 refactoring extraction rules. Given the inherent limitation of the rule-based approach,
the rules cannot be complete. Further, more rules need to be developed and refined to find better refactoring can-
didates. In addition, other methods of finding refactoring candidates are needed. Using our rule-based approach,
for refactorings such as Extract Class and Extract Method, determining specific code blocks to be split in an
automated way is difficult.

While the dynamic profiling-based approach of refactoring identification needs efforts of dynamic profiling in
addition to the approach of using static information only, the benefit of using the dynamic profiling-based approach
may outweigh the efforts of dynamic profiling. In addition, the efforts of dynamic profiling are manageable
because dynamic profiling is done just once at the beginning of the approach.

We assume that the application of elementary refactorings (i.e., Move Method refactorings) do not change—
delete or merge—entities in the MISs; but only the membership information—which entity is placed in which
class—is changed. As a result, the vertices and edges of the constructed RED-graph G is remained same after
the application of the selected refactorings. Therefore, MISs do not need to be calculated for every iteration of the
refactoring selection process. The calculation of MISs is done once at the beginning of the refactoring selection
process. For the future work, we plan to consider more types of refactorings. According to this, we need to
develop the method of recalculating the MISs for accommodating the situations that the application of elementary
refactorings deletes or merges entities.

It is worth to mention that the goal of our method of refactoring selection is not to find an optimal sequence of
refactorings. We attempt to select multiple refactorings that can be applied at the same time; and the sequence of
refactorings is generated by logging the results of the selected multiple refactoring for each refactoring selection
process. By this way of selection, we take the advantages of (1) considering refactoring dependencies and the
creation of new refactoring candidates after the application of the refactoring suggestions, and (2) more efficient

computing and searching than the approach of selecting just the single best refactoring.

— 60—

Chapter 9. Conclusion and Future Work

9.1 Summary of Contributions

In the thesis, we provide the methods for supporting systematic refactoring identification: identification of
refactoring candidates and selection of refactorings to be applied. For identification of refactoring candidates,
we attempt top-down and bottom-up approaches. First, for the top-down approach—finding refactoring oppor-
tunities by using heuristic rules for eliminating violations of design principles (e.g., removing bad smells) in
object-oriented software systems—we establish the rules to extract the refactoring candidates with the aim of re-
ducing dependencies of entities of methods and classes. When establishing the rules, entities are identified based
on how the users utilize the software (e.g., user scenario and operational profile); and within these entities, refac-
toring candidates are identified. Second, for the bottom-up approach—identification of refactoring opportunities
without humans’ insights—we develop the method for grouping elementary refactorings by using the concept of
the MIS in graph theory. For grouping of elementary refactorings, we develop the method for forming entities
(i.e., methods and attributes) into MISs by taking the RED into account. The methods involved in each MIS are
transformed into a group of Move Method refactorings. Each of the group has elementary refactorings that can be
applied at the same time. For selecting refactorings to be applied, we provide the method of selecting refactorings
(refactoring effect evaluation framework) by supporting assessment and impact analysis of elementary refactor-
ings. By referring the refactoring effect evaluation framework (delta table), we select the group of refactorings
containing the multiple elementary refactorings that best improves maintainability. We evaluate our proposed
approach in three open-source projects—jEdit, Columba, and JGIT. From the experimental results, we conclude
that dynamic information is helpful in identifying refactorings that efficiently improve maintainability; because
dynamic information is helpful for extracting refactoring candidates in frequently changed classes. Furthermore,
the experimental results show that the selection method of multiple refactorings reduces search space exploration
cost; and the RED should be considered when selecting multiple refactorings.

The contributions of the thesis can be summarized as follows.
e Establish the framework of systematic refactoring identification
e Develop the method for dynamic information-based identification of refactoring candidates

e Recognize the new dependency of refactorings (i.e., RED) that is essential to be considered to correctly

identify a group of refactorings that most improve maintainability

e Develop the method for RED-aware grouping of elementary refactorings (by using the concept of the MIS

in graph theory)

—61 -

e Provide the method for selecting multiple (elementary) refactorings by supporting assessment and impact

analysis of elementary refactorings (based on the matrix computation, which enables fast computation)

e Perform empirical studies on large-sized open source programs

9.2 Future Work

The framework of refactoring selection provides the methods of assessment and impact analysis of ele-
mentary refactorings (based on the matrix computation), and these methods support to easily extend considering
refactorings to other various type of refactorings; because the action of big refactoring (e.g., Collapse Hierarchy
Class refactoring) comprises of elementary refactorings (e.g., Move Method refactoring). Therefore, to provide
more complete methods for supporting systematic refactoring identification, we plan to consider more types of
refactorings (that are considered in [22])), for example, Pull Up Method refactoring and Form Template Method

refactoring.

62—

References

[1] Noga Alon, Laszl6 Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the maximal

independent set problem. Journal of algorithms, 7(4):567-583, 1986.

[2] G. Arévalo. Understanding behavioral dependencies in class hierarchies using concept analysis. Proceedings

of LMO, 3:47-59, 2003.

[3] E Arisholm, LC Briand, and A Fgyen. Dynamic coupling measurement for object-oriented software. /IEEE

Transactions on Software Engineering, pages 491-506, 2004.

[4] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic coupling measurement for object-oriented software. IEEE

Transaction on Software Engineering, 30:491-506, 2004.

[5] Erik Arisholm and Lionel C. Briand. Predicting fault-prone components in a java legacy system. In ISESE
’06: Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, pages
8-17, New York, NY, USA, 2006. ACM.

[6] Felix Bachmann, Len Bass, and Robert Nord. Modifiability tactics. Technical Report, 2007.

[7] J. Bansiya, L. Etzkorn, C. Davis, and W. Li. A class cohesion metric for object-oriented designs, journal of

object-oriented program. Journal of Object-Oriented Program, 11(8):47-52, 1999.

[8] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design quality assessment.

Software Engineering, IEEE Transactions on, 28(1):4—17, 2002.

[9] E. Biermann, K. Ehrig, C. Kohler, G. Kuhns, G. Taentzer, and E. Weiss. Emf model refactoring based on

graph transformation concepts. Electronic Communications of the EASST, 3(0), 2007.

[10] Bart Du Bois, Serge Demeyer, and Jan Verelst. Refactoring - improving coupling and cohesion of existing

code. Working Conference on Reverse Engineering, 0:144—-151, 2004.

[11] C. Bonja and E. Kidanmariam. Metrics for class cohesion and similarity between methods. Proceedings of

the 44th annual Southeast regional conference, pages 91-95, 2006.
[12] Borland. Together 2006 Release 2 for Eclipse, 2006. http://www.borland.com/us/products/together/index.html.

[13] L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for coupling measurement in object-oriented

systems. Software Engineering, IEEE Transactions on, 25(1):91-121, 1999.

[14] LC Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of UML sequence diagrams. In

Proceedings of the 10th Working Conference on Reverse Engineering, pages 57-66, 2003.

—63 -

[15] Lionel C. Briand and Jurgen Wust. Empirical studies of quality models in object-oriented systems. In

Advances in Computers, pages 97-166. Academic Press, 2002.

[16] M.G. Burke, J.D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M.J. Serrano, V.C. Sreedhar, H. Srinivasan,
and J. Whaley. The jalapeno dynamic optimizing compiler for java. In Proceedings of the ACM 1999
conference on Java Grande, pages 129-141. ACM, 1999.

[17] Costas Busch. Maximal Independent Set, 2000. http://www.slidefinder.net/m/maximal_independent_set/mis/15624838.

[18] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. Software Engineering, IEEE
Transactions on, 20(6):476—493, 1994.

[19] KJ Cios, W. Pedrycz, and RM Swiniarsk. Data mining methods for knowledge discovery. IEEE Transactions
on Neural Networks, 9(6):1533-1534, 1998.

[20] Columba. Columba, 2011. http://sourceforge.net/projects/columba/.

[21] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-oriented reengineering patterns. Morgan Kaufmann,

2002.

[22] Java development user guide. Refactoring Actions, 2013.

http://help.eclipse.org/juno/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm.

[23] M. Dmitriev. Selective profiling of java applications using dynamic bytecode instrumentation. In Perfor-
mance Analysis of Systems and Software, 2004 IEEE International Symposium on-ISPASS, pages 141-150.
IEEE, 2004.

[24] Bart Du Bois, Serge Demeyer, and Jan Verelst. Refactoring - improving coupling and cohesion of existing
code. In Proceedings of the 11th Working Conference on Reverse Engineering, pages 144—151, Washington,
DC, USA, 2004. IEEE Computer Society.

[25] S.Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible language-independent environment for reengi-
neering object-oriented systems. In Proceedings of the Second International Symposium on Constructing

Software Engineering Tools (CoSET 2000), pages 1-7. Citeseer, 2000.

[26] A.L. Edwards. An introduction to linear regression and correlation. W.H. Freeman, San Francisco, CA,

1976.

[27] R.Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 28-36. Society for Industrial and Applied Mathematics,
2003.

[28] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou. Identification and appli-

cation of extract class refactorings in object-oriented systems. Journal of Systems and Software, 2012.

— 64—

[29] M. Fowler and K. Beck. Refactoring: Improving the design of existing code. Addison-Wesley Professional,
1999.

[30] R. France, J. Bieman, and B.H.C. Cheng. Repository for Model Driven Development (ReMoDD). Lecture
Notes in Computer Science, 4364:311, 2007.

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[32] V. Garousi, L. Briand, and Y. Labiche. Analysis and visualization of behavioral dependencies among dis-
tributed objects based on uml models. Model Driven Engineering Languages and Systems, pages 365-379,
2006.

[33] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering. Prentice Hall PTR, 2002.
[34] David Gilbert and Thomas Morgner. JFreeChart, 2010. http://www.jfree.org/jfreechart/.

[35] M.S. Gittens. The Extended Operational Profile Model for Usage-based Software Testing. Library and
Archives Canada Bibliotheque et Archives Canada, 2005.

[36] P Van Gorp, H Stenten, T Mens, and S Demeyer. Towards automating source-consistent uml refactorings.

Lecture Notes in Computer Science, pages 144—158, 2003.
[37] Ah-Rim Han. ARTool, 2011. https://github.com/igsong/ARTOOL.

[38] Ah-Rim Han and Doo-Hwan Bae. Dynamic profiling-based approach to identifying cost-effective refactor-

ings. Information and Software Technology, 55(6):966-985, 2013.

[39] Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, and Jang-Eui Hong. Measuring behavioral dependency for
improving change-proneness prediction in uml-based design models. The Journal of Systems & Software,

83(2):222 — 234, Feb 2010.

[40] A.R.Han, S.U. Jeon, D.H. Bae, and J.E. Hong. Behavioral Dependency Measurement for Change-Proneness
Prediction in UML 2.0 Design Models. Proceedings of the 32nd Annual IEEE International Computer
Software and Applications, pages 7683, 2008.

[41] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Series in

Data Management Systems, San Francisco, CA, second edition, 2006.

[42] M. Harman. Refactoring as testability transformation. In Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages 414—421. IEEE, 2011.

[43] M. Harman and L. Tratt. Pareto optimal search based refactoring at the design level. In Proceedings of the

9th annual conference on Genetic and evolutionary computation, pages 1106-1113. ACM, 2007.

—65 -

[44] Brian Henderson-Sellers. Object-oriented metrics: measures of complexity. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996.

[45] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to identifying refactoring opportunities for
merging code clones in a java software system. Journal of Software Maintenance and Evolution: Research

and Practice, 20(6):435-461, 2008.

[46] K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring, and suggesting form template method refactoring
opportunities with program dependence graph. In 16th European Conference on Software Maintenance and

Reengineering (CSMR’12), pages 53-62, 2012.

[47] W.W. Hwu and P.P. Chang. Achieving high instruction cache performance with an optimizing compiler. In

ACM SIGARCH Computer Architecture News, pages 242-251. ACM, 1989.

[48] IBM Rational. Rational Software Architect Standard Edition, 2008. http://www-

01.ibm.com/software/awdtools/swarchitect/standard/.
[49] jEdit. jEdit, 2011. http://www.jedit.org/.

[50] S.U. Jeon, J.S. Lee, and D.H. Bae. An automated refactoring approach to design pattern-based program
transformations in java programs. In Software Engineering Conference, 2002. Ninth Asia-Pacific, pages

337-345. IEEE, 2002.
[51] JetBrains. IntelliJ IDEA, 2012. http://www.jetbrains.com/idea/.
[52] JGIT. JGIT, 2011. http://eclipse.org/jgit/.

[53] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. On generating all maximal indepen-

dent sets. Information Processing Letters, 27(3):119-123, 1988.

[54] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of maintainability enhancement by
refactoring. In Proceedings. International Conference on Software Maintenance, 2002., pages 576 — 585,

2002.
[55] Joshua Kerievsky. Refactoring to patterns. Addison Wesley Pearson Education, 2005.

[56] Sukhee Lee, Gigon Bae, Heung Seok Chae, Doo-Hwan Bae, and Yong Rae Kwon. Automated scheduling
for clone-based refactoring using a competent GA. Softw., Pract. Exper., 41(5):521-550, 2011.

[57] W Li and S Henry. Object-oriented metrics that predict maintainability. Journal of systems and software,

23(2):111-122, 1993.

[58] H. Liu, Z. Ma, W. Shao, and Z. Niu. Schedule of bad smell detection and resolution: A new way to save

effort. Software Engineering, IEEE Transactions on, 38(1):220-235, 2012.

— 66 —

[59] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM journal on
computing, 15(4):1036-1053, 1986.

[60] P.C. Mahalanobis. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 2(1):49-55, 1936.

[61] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In Program Comprehension, 1998. IWPC’98. Proceedings.,

6th International Workshop on, pages 45-52. IEEE, 1998.
[62] J. Martin and C. L. McClure. Software Maintenance: The Problems and its Solutions. Prentice Hall, 1983.
[63] R. C. Martin. Agile Software Development: Principles, Patterns and Practices. Prentice Hall, 2003.

[64] T Mens, G Taentzer, and O Runge. Analysing refactoring dependencies using graph transformation. Software

and Systems Modeling, Jan 2007.

[65] T Mens and T Tourwé. A survey of software refactoring. IEEE Transactions on Software Engineering,

30(2):126-139, 2004.
[66] J.D. Musa. Operational profiles in software-reliability engineering. Software, IEEE, 10(2):14-32, 1993.

[67] J. T. Nosek and P. Palvia. Software maintenance management: Changes in the last decade. Journal of

Software Maintenance: Research and Practice, 2(3):157-174, 1990.

[68] M O’Keeffe and M O Cinnéide. Search-based refactoring for software maintenance. The Journal of Systems

& Software, 81(4):502-516, 2008.

[69] P. Oman and J. Hagemeister. Metrics for assessing a software system’s maintainability. In Proceerdings of

Conference on Software Maintenance, 1992., pages 337 =344, 9-12 1992.

[70] OMG. UML 2.4 Superstructure Specification, (formal/2010-05-05) edition, 2010.
http://www.omg.org/spec/UML/2.4/Superstructure/PDF/.

[71] W.F. Opdyke. Refactoring: A program restructuring aid in designing object-oriented application framework.

Ph.D. thesis, University of Illinois at Urbana-Champaign, 1992.

[72] D. Parnas. Software aging. In Proceedings of The 16th International Conference on Software Engineering

(ICSE94), pages 279-287. IEEE Computer Society Press, 1994.

[73] E. Piveta, J. Aratijo, M. Pimenta, A. Moreira, P. Guerreiro, and R.T. Price. Searching for opportunities of
refactoring sequences: Reducing the search space. In Computer Software and Applications, 2008. COMP-

SAC’08. 32nd Annual IEEE International, pages 319-326. IEEE, 2008.

[74] F. Qayum and R. Heckel. Search-based refactoring using unfolding of graph transformation systems. Elec-

tronic Communications of the EASST, 38(0), 2011.

— 67 —

[75] A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1999.

[76] R. Robbes, M. Lanza, and D. Pollet. A benchmark for change prediction. Faculty of Informatics, Universit

della Svizzerra Italiana, Lugano, Switzerland, Tech. Rep, 6, 2008.

[77] R. Robbes, D. Pollet, and M. Lanza. Replaying ide interactions to evaluate and improve change prediction
approaches. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on, pages 161-170.
IEEE, 2010.

[78] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk. Urbana, 51:61801, 1997.

[79] Atanas Rountev, Olga Volgin, and Miriam Reddoch. Control flow analysis for reverse engineering of se-

quence diagrams. Rapport Technique, Ohio State University, 2004.
[80] Chris Seguin. JRefactory, 2003. http://jrefactory.sourceforge.net/csrefactory.html.

[81] O. Seng, M. Bauer, M. Biehl, and G. Pache. Search-based improvement of subsystem decompositions. In
Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1045-1051. ACM,
2005.

[82] O Seng, J Stammel, and D Burkhart. Search-based determination of refactorings for improving the class
structure of object-oriented systems. Proceedings of the 8th annual conference on Genetic and evolutionary

computation, page 1916, 2006.

[83] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based refactoring. In Software Maintenance and

Reengineering, 2001. Fifth European Conference on, pages 30-38. IEEE, 2001.

[84] A. Srivastava and A. Eustace. Atom: A system for building customized program analysis tools. ACM

SIGPLAN Notices, 39(4):528-539, 2004.

[85] Friedrich Steimann and Jens von Pilgrim. Refactorings without names. In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering, pages 290-293. ACM, 2012.

[86] L Tahvildari and K Kontogiannis. A metric-based approach to enhance design quality through meta-pattern

transformations. Proc. European Conf. Software Maintenance and Reeng, pages 183—192, 2003.

[87] N Tsantalis and A Chatzigeorgiou. Identification of extract method refactoring opportunities. Proceedings
of the 2009 European Conference on Software Maintenance and Reengineering-Volume 00, pages 119-128,
2009.

[88] N Tsantalis and A Chatzigeorgiou. Identification of move method refactoring opportunities. Software Engi-

neering, IEEE Transactions on, 35(3):347 — 367, 2009.

— 68 —

[89] N. Tsantalis and A. Chatzigeorgiou. Ranking refactoring suggestions based on historical volatility. In Soft-
ware Maintenance and Reengineering (CSMR), 2011 15th European Conference on, pages 25-34. IEEE,
2011.

[90] H. Van Vliet. Software Engineering: Principles and Practice. Wiley, second edition, 2000.

[91] Ruediger Zarnekow and Walter Brenner. Distribution of cost over the application lifecycle - a multi-case

study. In Proceedings of the Thirteenth European Conference on Information Systems, 2005.

[92] L. Zhao and J.H. Hayes. Predicting classes in need of refactoring: An application of static metrics. In
Proceedings of the workshop on predictive models of software engineering (PROMISE), associated with

ICSM2006, pages 1-5. Citeseer, 2006.

[93] Minhaz F Zibran and Chanchal K Roy. Conflict-aware optimal scheduling of code clone refactoring: a
constraint programming approach. In Program Comprehension (ICPC), 2011 IEEE 19th International Con-
ference on, pages 266-269. IEEE, 2011.

— 69 —

Chapter A. Behavioral Dependency Measure as a Good

Indicator for Change-Proneness Prediction [39]

A.1 Behavioral Dependency Measure
Behavioral Dependency

A change in a class can affect other classes enforcing them to be modified. In order to predict the class
affected when a class changes occurs, we need to examine the dependencies of pairs of entities (i.e., classes or
objects) in the system. In this paper, we focus on behavioral dependency.

Essentially, we assume that the object sending a message has a behavioral dependency on the object receiving
the message. This is derived from the insight that modifying the class of the object receiving a message may affect
the class of the object sending the message. It is important to note that when an object sends a message to another
object, the class implementing the corresponding method of the message may be different from that of the object
receiving the message. This is due to the use of inheritance relationships and polymorphism, which may cause
dynamic binding of methods. In this case, the class of the object sending a message must be bound to (i.e., have
a behavioral dependency on) the class implementing the actual method of that message. Therefore, we need to
consider inheritance relationships and polymorphism according to the behavior of objects in order to correctly
identify dependencies between classes and ultimately predict change-proneness accurately. This issue will be
explained in detail in Subsection[A.T] We also assume that a high intensity of behavioral dependency represents
high possibility of changes to be occurred. The rationale behind this assumption is that the more external services

upon which the class of an object is dependent, the more likely it is that the class will be changed.

sdA J sd B

l 01:C l l 02:C2 H 03:C3 H 04:C4 H 05:Cs l l 01:Cq l l 02:C2 H 03:C3 l
N | | |L<4Q’D| :
[g —»D c, ||| ke
[PSRN f; | altl] fcond] | |
[4?—»# | 2 I
e B | I iy S
— f H} [ellse] bl |
| < | | 0
I] i ' ' t I

Figure A.1: Examples of Sequence Diagrams (SDs)

To quantify the behavioral dependency, we define two kinds of behavioral dependencies: direct and indirect.

Each is defined as follows. Let O denote a set of objects existing in a system.

Definition 3 (Direct behavioral dependency). For opy, ops € O, opy has a direct behavioral dependency on ops
if op1 needs some services of ops by sending a synchronous message to ops and receiving a reply from ops. We

denote direct behavioral dependency as a relation —.

-70 -

Definition 4 (External service request relation). For op1, ops, ops € O, op1 — opz and then opz — ops3 because
op1 needs external service which is provided from ops via ops. We denote this as an external service request

relation . Therefore, in this case, (op1 — op2) N (0ps — 0p3).

Definition 5 (Indirect behavioral dependency). We denote indirect behavioral dependency as a relation ~~. For
example, for op1, opa, ops, ..., op, € O, if we have the relation (op1 — opa) ™ (opa — 0p3) N~ ... N
(OPn—1 — Opy), then we can derive the indirect behavioral dependency as op1 ~» op, except n = 2, which
means a direct behavioral dependency op; — opa.

A synchronous message entails a dependency between two objects since the sender object depends on the
receiver object. On the other hand, an asynchronous message does not entail such dependency since the sender
object does not wait for a reply but continues to proceed. This means the reply will not affect the sender object’s
behavior. Therefore, in our approach, we only consider synchronous messages with replies.

Fig. shows two examples of SDs. In SD sd A, object 01 has a direct behavioral dependency on object 05
because it sends a synchronous message a to object 02 and receives a reply from it. On the other hand, object 0;
has an indirect behavioral dependency on object 03; before object 0; receives a reply for message a from object
02, message b is sent from object 05 to object 03. By the same reasoning, object 0; and object 04, as well as
object 05 and object 04, have indirect dependencies. Asynchronous message € from object 0; to object 0 does
not entail a behavioral dependency since object 0; (the sender) does not wait for a reply from object 05. All
messages in SD sd B cause direct behavioral dependencies.

It is important to note that an indirect behavioral dependency is not a transitive relation. For example, in Fig.
[A1] object 01 and object 05 do not have a behavioral dependency, even though object 0; and object 0, have a
behavioral dependency because of message a and object 05 and object 05 have a behavioral dependency because
of message f. This is because message f is sent from object 02 to object 05 after object 0; receives the reply
for message a from object 02. For this reason, we need to save the information of the message that triggers the
current message to precisely identify the indirect behavioral dependency between the two objects. In this way,
when object o, has an indirect dependency on object o, we can derive a reachable path (a sequence of exchanged

messages between two objects) by traversing stored messages from object o; to object o; in a backward direction.

Features of the Behavioral Dependency Measure

The proposed BDM has a number of features that are different from existing metrics.

First, the most important feature of the BDM that makes it unique is that it considers inheritance relationships
and polymorphism. In general, polymorphism indicates method overriding and method overloading. We do not
take method overloading into account because it refers to methods that have same name with different numbers
or types of parameters in one class; as a result, method overloading does not occur dependency among classes.
Therefore, in this paper, polymorphism means method overriding on the classes having inheritance relationships.
As the system contains more inheritance relationships and polymorphism, dependency among classes becomes
more complex because of dynamic binding of methods. Hence, inheritance relationships and polymorphism as

they relate to the behavior of objects need to be considered in order to correctly identify dependency among classes.

—71 -

Shape Canvas
+draw()
I l |
Triangle Circle Rectangle
+draw() +draw() +draw()
Square
(@)
sd draw) sd draw) sd draw) sd draw)
| t:Triangle | | c:.Circle | | r:Rectangle | | s:Square |
draw () | draw () | draw () | draw () |
— —
S ez === Q
(b)

Figure A.2: An example of using inheritance relationships and polymorphism: (a) A class diagram representing

classes and their relationships. (b) SDs representing the behaviors of objects that are instantiated from the classes

EER=80% EER=20%

* EER (Expected Execution Rate)

(a)
Ce
Cs
+a() =
+9() +f()
Cq C2 — Cs
+a() =)
v +d()
C3
+b() i
(b)

Figure A.3: (a) An example of the Interaction Overview Diagram (IOD). (b) An example of the class diagram that
has classes from which the objects, in the SDs in Fig. Eare instantiated.

Indeed, this is critical for the accurate prediction of change-proneness. If we were not to consider inheritance
relationships and polymorphism, a class may be mistakenly predicted to be prone to change. The example in Fig.

[A2] shows the importance of considering inheritance relationships and polymorphism in relation to the behavior

—72—

of objects when measuring dependency between classes. In the class diagram in Fig. the Canvas class
has an association with the Shape class, which indicates that the Canvas class calls the method draw in the
Shape class. In other words, the Canvas class is dependent on the Shape class. This static dependency is the
information that we can derive from the class diagram. Most existing coupling metrics are measured based on
static dependencies. However, if the message draw is sent to the object that is an instance of the subclass of
the Shape class and that subclass overrides the method draw, the dependency is bound between the Canvas
class and the subclass, even though the association is specified between the Canvas class and the Shape class.
Furthermore, if the message draw is sent to the object that is an instance of the subclass of the Shape class but
does not have the method draw, the dependency is bound between the Canvas class and the subclass’s one of
the parent classes that implement the method draw. The SDs in Fig. illustrate the behavior of the objects
that are instances of subclasses (i.e., Triangle class, Circle class, Rectangle class, and Square class) of the
Shape class in Fig. By considering the three foremost SDs, we can determine that the Canvas class is
behaviorally dependent on the Triangle class, Circle class, and Rectangle class, all of which override the method
draw. By considering the last SD, which tell us that the object of the Square class receives the message draw, we
can also determine that the Canvas class is behaviorally dependent on the Rectangle class, since the method of
the message draw is actually implemented in the Rectangle class. As a consequence, no matter where an actual
method is implemented, the proposed BDM enables a class of the object sending a message to be bound to the
class that implements the actual method of that message; this is the feature that makes the BDM more sensitive to
systems with high levels of inheritance relationships and polymorphism.

Second, we consider the extent and direction when measuring the behavioral dependency. No matter how
many times a class calls the method of another class, the established coupling metric (e.g., CBO) treats this as one
in either direction. This is because the established coupling metric is based on method call dependencies that only
capture the static characteristics of couplings. Let us consider two cases; class c¢; implements one method called
100 times by class ¢;, while class ¢, implements two methods that called by class ¢; once time for each method.
The established static couplings for the former case and the latter case are one and two, respectively. However,
class ¢; might be more behaviorally dependent on class ¢; than it is on class ci. Therefore, it is important to keep
the information relating to the extent and direction of a class’s dependence.

Third, we consider the execution rate of the messages based on the control structure and the operational
profile. We use two kinds of diagrams, an SD and an IOD, to depict a system’s behavior. An SD in UML 2.0
provides combined fragments that allow us to express control structures such as branch and loop. An alt combined
fragment that corresponds to a branch control structure describes the behavior of two or more mutually-exclusive
alternatives. A message in an alt combined fragment can be executed depending on the condition. This may affect
the behavioral dependency of objects that are related by this message. Without running a program (i.e., dynamic
information), it is difficult to determine whether the message will be executed or not. Therefore, the probabilistic
execution rate of a message is considered when measuring a behavioral dependency. For example, in the SD sd B

of Fig. either message a or message b is executed whether the condition is satisfied or not (i.e., true or false).

—-73 -

oo BDM measurement procedure J

«datastore» G «datastore»

Sequence Diagrams (SDs) \L Interaction Overview Diagram (I0OD)

«datastore»

Class Diagram . Construct OBDM for each SD j >t «datastore»

OBDMs

. Synthesize OB?AMS into J <

«datastore»
OSBDM

M

. Derive all reachable paths s

I:i for each pair of objects RPS between objects
«datastore» o
. Sum the number of weighted reachable
sumWRP between classes GE[paths for each pair of classes
. Caculate the BDM for each «datastore»
class BDM

©

Figure A.4: Overview of our approach of BDM measurement

Therefore, the probabilistic execution rate of each message can be 0.5. An IOD in UML 2.0 illustrates an overview
of a flow of control in which each activity node can be an SD. Some scenarios (i.e., SDs) might be executed more
frequently than others, as specified in the operational profile [35]. The operational profile provides the expected
execution rate of an SD. Therefore, the operational profile also needs to be considered for the better measurement
of the behavioral dependency. We suggest specifying the Expected Execution Rate (i.e., the operational profile)
of each SD in an IOD. For example, the IOD in Fig. shows that the Expected Execution Rates of SD A and
SD B are 80% and 20%, respectively.

A.2 Procedure for Behavior Dependency Measure Measurement

In this section, we explain a systematic way of calculating the BDM in UML design models using SDs, a
class diagram, and an IOD. An overview of our approach is shown in Fig. [A-4] The BDM is computed through the
following procedures. First, Object Behavioral Dependency Model (OBDM) is constructed for each SD based on
all direct and indirect behavioral dependencies between objects by referring to the class diagram and the IOD. After
that, we synthesize all OBDMs into the Object System Behavioral Dependency Model (OSBDM) for the entire
system. Next, we derive all the reachable paths for each pair of objects in the system from the OSBDM. We then
sum the weighted reachable paths for each pair of classes (a reachable path is weighted using the distance length
between objects and the execution rate of the messages of which the reachable path is composed). Finally, we

calculate the BDM for every class in the system. Detailed procedures are described in the following subsections.

Constructing OBDMs

A dependency model OBDM 4 for SD A is a 2-tuple (O, M), where

—74 —

e O is a set of nodes representing objects in the SD

e M is a set of edges representing messages that are exchanged between two nodes. Message m € M
represents a synchronous message with a reply, which entails a direct dependency from a sender object to a

receiver object. Message m has following six attributes.

— ms € O is the sender of the message.
— m,. € O is the receiver of the message. m,. # m.

— m,, is the name of the message.

9

— my € M is the instance of a backward navigable message. my;, # m. means none.

— Mumer 1S the probabilistic message execution rate in an SD. 0 < my,.;, < 1. The default value is 1.

— Mmen 18 the expected message execution rate in an IOD. 0 < my,.g < 1. The default value is 1.

mg and m,. represent the sender and receiver objects, respectively. Since we do not consider messages from
an object to itself, they should not represent the same node. As was pointed out in Subsection[A.T| when an object
sends a message to another object, the class of the object receiving a message may be different from the class
implementing the corresponding method. In such a case, the class of the object sending the message may change
when the implemented method changes. Therefore, when binding a receiver node, it is important to note whether
the method is actually implemented in the class of the receiver object. If not, the receiver node of the message is
bound to an object of a parent class that actually implements the method.

my, represents the message that triggers m and is called a backward navigable message. As was noted in
Subsection[A.T] m, is essential for identifying indirect behavioral dependencies between objects. We can identify
the message that activates the current message by tracing the backward navigable message. When deriving a

reachable path from the OSBDM, identification of the message that triggers m prevents infinite loop of traversing.

As was described in Subsection Mmer and My, help to better predict the change-proneness of classes
by considering the probabilistic or expected execution rates of the messages. Later, these rates are synthesized
according to a reachable path and used to measure behavioral dependency. m,,.r, represents the probabilistic
message execution rate in an SD. We consider a branch control structure that might affect the probability of the
message execution. Note that a branch control structure is represented as an alt combined fragment in UML
2.0. When a message is in an alt combined fragment, it is executed only when a condition of the corresponding
interaction operand is met. Therefore, m,,.r, is the same as the probability that one of the interaction operands
that contain the message is selected. If an alt combined fragment is nested, the probability that a message will
be executed in the corresponding combined fragment is multiplied to m,,.y, recursively. When a message is not
contained in any combined fragments, its M1, is 1. m,,. i represents the expected message execution rate in an
I0D. We specify the Expected Execution Rate (i.e., the operational profile) of each SD in an IOD. A message in

an SD is executed only when the corresponding SD is activated. Therefore, m . is the same as the probability

-75 -

OBDM4 OBDMg

c(b,1,0.8
a108 a'(-0.5,0.2) e
1osb(0502

a(-1,0.8)
(-1,0.8) 9t.1.02) @

(a)

OSBDM b’(-,0.5,0.2) clb A, 08
b(a,1,0.8)
9(-1,0.2) a(,0.5,0.2)
N
@ a108)
(-1,0.8) f(—,1,08

(b)

Figure A.5: (a) OBDM 4 and OBDM g correspond to SD sd A and SD sd B in Fig. (b) The obtained OSBDM
by synthesizing the two OBDMs in (a).

that the control flow of the software reaches the SD to which the message belongs. The m,,.g values can be
obtained by multiplying all the Expected Execution Rates on the way from the initial node to the corresponding
SD node in the IOD. If an SD is always activated, the m.,,. g values of all the messages in the SD are 1.

Fig. shows an example of two OBDMs constructed from SD sd A and SD sd B in Fig. Each
node of object 0;, 1< ¢ <6, corresponds to an instance of class ¢; in Fig. [A.3(b)] Each edge of message m
is represented as M., (Mp, MpmeL, Mmerr). Due to inheritance relationships and polymorphism, which may bring
about dynamic binding of methods (Subsection[A.T]), we examine the behavior of objects in SDs and the structures
of classes in a class diagram in order to correctly identify dependency between classes. In other words, when an
object sends a message to another object, we first check whether the method of the message is implemented in the
class of the receiving object or in one of its parent classes; we then create an edge corresponding to the message
between the node of the object sending the message and the object of which the class actually implemented the
method of the message. For instance, when object 0; sends message a to object Oz, just as in SD sd A, we create
the edge of message a between node 0; and node 05 in OBDMj since class Co overrides method a. On the other
hand, when object 0, sends message g to object 02, just as in SD sd B, we create the edge of message a between
node 0; and node 0g in OBDMg since class Cg actually implements method g. To distinguish the messages in
OBDMg from those in OBDM,, we rename message a to @’ and b to b’. Since either the message a’ or b’ may be
activated depending on the condition of the alf combined fragment, both &’ ne; and b’ e are 0.5. The Expected
Execution Rates of SD A and SD B are represented in the IOD in Fig. and are reflected in the execution

rates of the messages as 0.8 and 0.2, respectively.

-76 —

Algorithm 6 retrieveReachablePathSet(oq, 02 : O)

input OUT < outgoing message set of 01

input /N < incoming message set of o2
input RP < () an array for storing reachable path
/*RP denotes a reachable path*/
input RPS < () a vector for saving a set of reachable paths
output RPS

for all in € IN do
for all out € OUT do
if in == out then
/*For RPS by the Direct Behavioral Dependency™/
RPS + RPS U {in}
else
/*For RPS by the Indirect Behavioral Dependency*/
RP < RP + {in}
while iny,! = out && iny! = () do
if in == out then
RP + RP + {inp}
RPS <+ RPSURP
RP «+ 0
break
else
RP + RP + {inp}

in 4— iy

Synthesizing OBDMs into an OSBDM

To determine the behavioral dependencies between objects in the whole system, we synthesize OBDMs into
OSBDM = (04, My). O, and M, denote the set of objects and the union of messages that exist in the system,
respectively. The method for constructing the OSBDM will be explained using the example in Fig. Fig.
shows the obtained OSBDM by synthesizing the two OBDMs in Fig. This OSBDM is composed
of Og = {01,09,..,06} and My = {(m € M of SD sd A) U (m € M of SD sd B)}. Note that object 0; in
SD sd A and object 07 in SD sd B are instantiated from the same class ;. Therefore only one 0; remains in the
OSBDM. The sending message a from 07 in SD sd A and another sending message @’ from 0, in SD sd B are
connected with the corresponding target object 02 in the OSBDM. If a message m is triggered by another message
in the context of the system by examining the IOD, we set this other message as a backward navigable message of

message m. There is no such case in this example.

Deriving Reachable Paths

We derive all reachable paths for each pair of objects in the system from the OSBDM. Let RPS(0;,0;) = {s|
s is a reachable path between source object o; and target object o;} be a set of all the reachable paths between
two objects. To retrieve the RP.S(0;, 0;), we start traversing of the OSBDM from a message incoming to object
0; to a message outgoing from object o; in reverse. When object o; has a direct behavioral dependency on object

0, one of the incoming messages to object o; and one of the outgoing messages from object o; are equal. This

- 77 —

Table A.1: RPS(0;,0;), which is a set of all the reachable paths for each pair of objects (Row: 0;, Column: 0;) in

Fig [C0)

01 02 03 04 O5 O¢
01 - {a,a’} | {abb’} | {abc,ad} - {9}
0 - | oy | {bedy | ()] -
03 - - - {c} -
04 - - - - -
(o] - - - - -
Og - - - - -

message is then added into a set of reachable paths. On the other hand, when object o; has an indirect behavioral
dependency on object 0;, we traverse the OSBDM from one of the messages incoming to object o; iteratively by
substituting it with a backward navigable message. In doing this, we finally reach one of the outgoing messages
from object 0;. The stored sequence of messages encountered while traversing is the reachable path. The method

for retrieving a reachable path set from object 0; to object oy is presented in Algorithm [6] The set of reachable

paths for each pair of objects in Fig. is presented in Table [A.T]

Summing Weighted Reachable Paths

Prior to calculating the BDM for every class in the system, we sum the weighted reachable paths for each
pair of objects using the RPS obtained above. In this process, an object is projected onto the class from which the
object is instantiated. In this manner, the results of the summation of the weighted reachable paths are obtained
for each pair of classes.

We formalize the sum of the Weighted Reachable Paths (SumWRP) from class c; to class c¢; as follows:

SUTTZWRP(C,‘,C]') = Z DF(S) X f'rneL X fmeHa (Al)
Vs€RPS(0;,05)

where o; and o; indicate the objects that correspond to projected instances of class ¢; and c;, respectively. We
use three factors for weighting reachable path s: distance factor, f,,.r, and f,,.z. We define a distance factor by
DF(s) = 1/d, where d is the distance length (i.e., the number of messages in the corresponding reachable path
s). The rationale for using the distance factor is that an indirect behavioral dependency might be weakened by the
successive calls. In other words, the farther an object is from the source of changes, the less the object is likely
to be changed. Therefore, we need to degrade the impact when the distance of indirect behavioral dependency
between two objects is great. We represent the first message in the reachable path s as f. Then, f,.r, the
probabilistic message execution rate, and f,,.z, the expected message execution rate, are taken into account as
factors for weighting a reachable path.

We explain how to calculate SumWRP using Table To calculate SumW RP(C2,C4), for example, we
first obtain reachable paths, {bc,d}, between object 05 and object 04. We then identify weighting factors for

each reachable path. For reachable path bc, the distance factor is 1/2, because the number of messages in this

—78 —

Table A.2: SumWRP(Ci,Cj), which is the sum of the weighted reachable paths for each pair of classes (Row: ¢,
Column: ¢j) and the BDM(c;) value of each class in Fig. [A.3(b)

Ci | C2 | C3 Cy Ccs | c6 | BDM(c))
C1 0 09 | 05 | 0.67 0 0.2 2.27
C2 0 0 0.8 1.2 0.8 0 2.8
C3 0 0 0 0.8 0 0 0.8
C4 0 0 0 0 0
Cs 0 0 0 0 0
Co 0 0 0 0 0

reachable path is 2. The first message of this reachable path is b. Therefore, byer, 1, and byen, 0.8, are applied
for weighting the reachable path. For reachable path d, the distance factor is 1; dmeL and dmen are 1 and 0.8,

respectively. Finally, we sum the weighted reachable paths and obtain SumW RP(C2,C4) as follows:
SumW RP(Ca,C4) = (1/2x1x0.8) + (1 x1x0.8)=1.2

Calculating the Behavioral Dependency Measure

Finally, the BDM for every class ¢; in the system is obtained as follows. Let C' = {¢;|1 < i < n} be all the
classes existing in the system.
BDM(ci)= Y SumWRP(ci,c;). (A2)
Ve €C, i#j
Table summarizes the sum of the weighted reachable paths obtained from the OSBDM in Fig.
and the BDM of each class in Fig. The BDM is used to predict change-proneness; the higher the class’s
BDM, the larger the likelihood the class will be changed.

A.3 Change-Proneness Modeling

In this section, we describe the method for building a change-proneness prediction model. In our study, the

change-proneness is used for predicting change-prone classes in the successive versions.

Model Construction Method

To build the change-proneness prediction model, there are a large number of modeling techniques from
which to choose, including standard statistical techniques (e.g., logistic regression) and data mining techniques
(e.g., decision trees [41]]). Multiple linear regression provides a regression analysis of variance for a dependent
variable explained by one or more factor variables. Hence, we choose a stepwise multiple regression [26]] to build
the change-proneness model in this study. While constructing the regression, we remove outliers that are clearly
over-influential on the regression results. Two kinds of techniques can be used for outlier analysis: Standard errors

of the predicted values (S.E. of mean predictions) and the Mahalanobis distance [60]. The former is an estimate

-79 —

Table A.3: The number of ground facts regarding 13 subsequent versions of JFlex (versions 1.3 to 1.4.3).

1.3 1.3.1 | 1.3.2 | 1.3.3 | 1.34 | 1.4prel | 1.4pre3 | 1.4pred | 1.4pre5 | 1.4 141 | 142|143
Package 3 3 3 4 4 4 4 5 5 5 5 5 5
Class 44 44 44 48 48 47 47 61 59 59 59 62 62
Interface 4 4 4 4 4 4 4 3 3 3 3 4 4
Invoked Message 1768 | 1828 | 1828 | 2042 | 2048 | 2071 2135 2426 2418 2401 | 2376 | 2651 | 2651
Reachable Path 1394 | 1442 | 1442 | 2335 | 2339 | 2362 2282 3244 3244 3249 | 3242 | 3317 | 3319

of the standard deviation of the average value for dependent variable for cases that have the same values with the
independent variables. The latter is a measure of how much a case’s values on the independent variables differ
from the average of all cases; case means a data instance for constructing a prediction model. Hence, we identify
and remove the instances that have extremely large S.E. of mean predictions and large Mahalanobis distance

values.

Model Variables

We first collected several data types from the object-oriented software.

The independent variables include the C&K metrics, Lorenz and Kidd metrics, MOOD metrics, and the
BDM. We collect the C&K metrics and Lorenz and Kidd metrics using [[12]. These are the most widely used
metrics for evaluating object-oriented software. The set of metrics used in the case study are listed in the appendix.
To calculate the BDM, which is measured on UML models, we have developed a tool built on the EMF (Eclipse
Modeling Framework). It imports the UML 2.0 models in the format of XMI generated from [48]], an Eclipse-
based UML 2.0 modeling tool made by the Rational Division of IBM.

Following a common analysis procedure [5], we first perform a Principal Component Analysis (PCA) to
identify the dimensions actually present in the data relating to the independent variables. We do not make use
of a PCA to select a subset of independent variables since, as discussed in [15]], experience has shown that this
usually leads to suboptimal prediction models even though regression coefficients are easier to interpret. The re-
sulting principal components can be described in terms of categories such as size, complexity, cohesion, coupling,
inheritance and polymorphism (see the appendix).

The dependent variable of the model is the change-proneness. To compute the change-proneness, the change
data, which are obtained using a class-level source code diff, are collected for each application class. Based on this
change data, the total amount of changes (i.e., source lines of code added and deleted) within consequent releases

are measured.

A.4 Case Study

This section presents the results of a case study, the objective of which is to validate the usefulness of the

BDM presented above. The first subsection explains the details of the system. In the next subsection, the goal of

— 80—

the case study and the validation method are described. In the third section, results are presented and interpreted.

The last subsection ends with a discussion.

The Subjects

In order to investigate whether the BDM is statistically related to change-proneness, we need a target system
that has well documented UML models with a class diagram, SDs an IOD, and subsequent releases for extracting
change-related information. For our experiment, we reverse-engineered the UML design models from the existing
system, JFlex, using a reverse engineering tool with manual supports. JFlex is a lexical analyzer generator for
Java, which is written in Java. JFlex takes a specially formatted specification file containing the details of a lexical
analyzer as input and creates a Java source file for the corresponding lexical analyzer. A number of reasons led us

to select JFlex for the case study:

e It has evolved through 14 generations (at the time that we conducted this case study) and recorded the

history of changes.
e The full source code of each version is available because it is an open-source project.
e [t contains a relatively large number of classes.

e It is mature. The release dates are February 20, 2001 for the initial version (version 1.3) and January 31,

2009 for the latest version (version 1.4.3).

e [t was written in Java. Our BDM is applied in object-oriented software that uses inheritance relationships,

so polymorphism and dynamic binding may occur.

Among the 14 releases of JFlex, version 1.3.5 is not considered in the case study because the changes made
between this version and version 1.3.4 are negligible. Table[A.3|represents the number of ground facts regarding
the 13 successive versions of JFlex. The initial version of JFlex 1.3 consists of 44 Java classes and 1394 reachable
paths, while the latest version of JFlex 1.4.3 consists of 62 Java classes and 3319 reachable paths. The total
number of reachable paths can be less than the total number of invoked messages in each version of the system in
the following cases: (1) invoked messages for which call methods from the library are not considered (the scope
of the measurement is limited to the application classes of JFlex) and (2) invoked messages for which call methods
within the same class are not considered, since these internal messages do not cause behavioral dependency.

We collected several types of data (i.e., existing object-oriented software metrics, the BDM, and change data)
for each class from nine versions of JFlex based on reverse-engineered models. It should be noted that we collected
metrics that are available on design models. In other words, we did not gather metrics that are obtainable only from
source codes, such as source lines of code (SLOC), number of fields (NOF), and number of parameters (NOP).
To select classes with a long history of changes, we included the classes from the initial version that remain in the
latest version (i.e., 42 classes for each version of JFlex). For each version on which the BDM and other metrics

are measured, the change data was measured by counting the total number of changes in the next four subsequent

_81-—

|alt) 1: makeclass

T

| [cond = true] ‘l 1.1.1: dump l
l e j 1.1.2: dump

| R 2: makeclass |]

[cond = false] | I

| 2: CUPS$LexParse$do_action | |

Figure A.6: An SD that was reverse-engineered from source codes of JFlex version 1.3.

5ot Validation procedure J

«datastore»
Change data
||
«datastore» «datastore»
UML models “.JCollectdata |} BDM

«datastore»
Identified dimensions of data

datasto

Clustered membership of data

. Perform stepwise
multiple regression

. Validate the usefulness of BDM <

® 8

Figure A.7: A validation procedure followed during in this case study

versions. This change data is used as change-proneness. We take 9 of the 13 releases into account because the
change data is not available in the last four versions; we finally obtained 378 instances of classes.
We easily reverse-engineered the class diagram from JFlex source code. On the other hand, reverse-engineering

SDs is difficult and sometimes even impossible [14], because an SD represents the partial behavior of the over-
all system; SDs can exist in various forms according to the various users’ view on the system. Thus, in this
case study, we construct the SD for each reachable path that consists of consecutive invoked messages, while
extracting the structural information from source codes and reflecting it in the SD as alt, opt, or loop combined
fragments. It should be noted that the SD in UML 2.0 uses the combined fragments to represent one or more
sequences (traces) rather than specifying all the possible scenarios [79]. Hence, we do not need to execute the
system and monitor its execution to retrieve meaningful information and reverse-engineer SDs from source codes.

Fig. [A.6] shows an example of the reverse-engineered SD obtained from JFlex version 1.3. This SD corresponds

— 82 —

Table A.4: The analysis-of-variance (ANOVA) table that includes the results for each clustering variable

Cluster Error
Mean Square df Mean Square df F Sig.
MIF 320.333 1 439 376 729.972 .000
PF 7500.000 1 .383 376 19583.333 .000
DIT .000 1 2.168 376 .000 1.000
NOC .593 1 673 376 .881 .349

Table A.5: Descriptive statistics with respect to the four attributes for Group 1 (294 instances).

N Range Minimum Maximum Sum Mean Std. Variance Skewness
Statistic ~ Statistic Statistic Statistic Statistic ~ Statistic ~ Std. Error Statistic ~ Statistic ~ Statistic ~ Std. Error
PF 294 2 36 38 11088 37.71 .041 701 491 -2.052 142
MIF 294 2 70 72 20958 71.29 .041 701 491 -462 142
NOC 294 5 0 5 84 29 .051 .882 778 4.033 142
DIT 294 5 5 210 1 .086 1.471 2.164 1.864 142

to the reachable path from the object of the LexParse class to the object of the Out class with four messages:
CUP$LexParse$do_action, makeClass, sub, and dump. By analyzing source code from JFlex 1.3, for exam-
ple, we extracted 1394 reachable paths and, at the same time, constructed 1394 SDs with 1768 messages. The
IOD cannot be reversed from source codes; it is specified only from the early stages of software development to
help developers get an overview of the system. Thus, in this experiment, the Expected Execution Rate in the IOD

was not considered when calculating the BDM.

Goal and Validation Methodology

The goal of this case study is to confirm that the BDM is a significant additional explanatory variable over
and above that which has already been accounted for by other existing metrics when the system contains complex
inheritance relationships and polymorphism. It should be noted that the BDM considers dynamic features (see
Subsection [A.T). As a result, we expect the BDM to more accurately predict behavioral dependency when the
system is involved in a complex dynamic binding occurrence environment. Indeed, accurate prediction of behav-
ioral dependency helps to construct a better change-proneness prediction model. In order to achieve this goal, the
validation procedure depicted in Fig. was performed.

To investigate whether the effect of the BDM is different according to intensity of use of inheritance rela-
tionships and polymorphism, we divide the data set into two groups and independently build change-proneness

prediction models for each group. We cluster the data into the following groups:
e (Group 1) contains comparatively more complex inheritance relationships and polymorphism.
e (Group 2) contains comparatively less complex inheritance relationships and polymorphism.

To classify the data set into these two groups, a clustering technique was applied. Clustering is also called data

— 83 —

Table A.6: Descriptive statistics with respect to the four attributes for Group 2 (84 instances).

N Range Minimum Maximum Sum Mean Std. Variance Skewness
Statistic Statistic Statistic Statistic Statistic ~ Statistic ~ Std. Error Statistic ~ Statistic Statistic ~ Std. Error
PF 84 0 26 27 2268 27.00 .000 .000 .000 .000 263
MIF 84 1 73 74 6174 73.50 .055 .503 253 .000 263
NOC 84 2 0 2 16 .19 .060 .548 301 2.782 263
DIT 84 5 0 5 60 1 161 1.477 2.182 1.888 263

segmentation and is used to partition large data sets into groups according to similarities. Clustering may serve
as a preprocessing step for classification, which would then operate on the detected clusters and the selected
attributes or features [41]. We used K-means clustering [[19] with four inheritance- and polymorphism-related
metrics: PF (Polymorphism Factor), MIF (Method Inheritance Factor), NOC (Number of Children), and DIT
(Depth of Inheritance). Table [AE] represents the analysis-of-variance (ANOVA) table that includes the results for
each clustering variable. At the o = 0.05 significance level, MIF and PF are significant explanatory variables to
divide the groups since Sig. (p-value) ~ 0.000 < 0.05 = «. The descriptive statistics with respect to the four
attributes are provided for Groups 1 and 2 in Tables [A.5] and [A.6] respectively. The classification results show
that the classes in Group 1 have higher PF and NOC values than those in Group 2. Therefore, Group 1 can be
characterized as having more complex inheritance relationships and polymorphism than Group 2. As there is not
much difference in MIF values and no difference in DIT values between the two groups, we did not consider these
two attributes for identifying each group’s characteristics. In analyzing the cluster membership of the classes in
JFlex across the nine versions, we noticed that the classes that developed earlier tend to belong to Group 1, while
the classes that developed later tend to belong to Group 2. In other words, the JFlex system has evolved in that it
now has less complex inheritance relationships and polymorphism.

For Groups 1 and 2, we construct two change-proneness prediction models: one between the change and
existing metrics and the other between the change and the BDM in addition to existing metrics. Consequently,
we analyzed four change-proneness prediction models in total. To validate the assertion that the BDM helps to
explain additional variations in change-proneness, we compare the goodness-of-the-fit of those two models. As
a result, it is clear that the BDM contributes to obtain a better model fit. The results of the change-proneness

prediction models are presented and discussed in detail in the next subsection.

Results

[Results of the change-proneness prediction models.]

We evaluated the performance of the prediction models according to the goodness-of-the-fit (R-square) and
a sequence of the selection of independent variables. The sequence of the selection is important because the
independent variable that has the largest positive or negative correlation with the dependent variable is selected at
each step in a stepwise selection.

We first present the results of the two regression models obtained from the data set of Group 1. The results of

— 84—

Table A.7: Prediction model using existing metrics in Group 1.

Unstandardized Standardized

coefficients coefficients
Selected variables B Std. Error Beta t Sig.
(Constant) .050 .054 915 .361
cocC .050 011 215 4.695 .000
PProtM -.010 .004 -.122 -2.809 .005
NOC .199 .042 204 4.715 .000
WMC -.019 .004 -.399 -4.444 .000
MNOL 114 .030 249 3.748 .000

the stepwise regression using C&K metrics, Lorenz and Kidd metrics, and MOOD metrics as candidate covariates
are presented in Table The prediction model included five variables. The model explains around 57 percent
of the variance of the data set and shows an adjusted R? of 0.54. The sequence of variables entering into the model
is COC, PProtM, NOC, WMC, and MNOL. The result after including the BDM in addition to existing metrics to
make a prediction model, we obtain the result as shown in Table Around 64 percent of the variance in the
data set is explained and an adjusted R? of 0.63 is obtained. In this model, COC, BDM, PProtM, NOC, MNOL,
WMC, and NORM variables were included in the order of the sequence as listed. Note that the BDM is the second
variable to be included with significant-level of p-value < 0.00001. Even when accounting for the difference in
the number of covariates, the coefficient of determination (R2) is increased by 9 percent (from 0.54 to 0.63)
when using the BDM. Therefore, this experiment shows that the BDM helps to obtain a better change-proneness
prediction model. In other words, even though the existing metrics still do most of the lifting, the BDM captures
additional dimensions that enable the construction of a more accurate change-proneness prediction model.

From the data set of Group 2, we also constructed two regression models, one using only existing metrics
for the baseline of the comparison and the other using the BDM in addition to existing metrics, to investigate
whether the effect of the BDM performs differently according to the intensity of inheritance relationships and
polymorphism. In this group, the BDM was not included when constructing the regression model. Hence, the
results of the two models are the same. Table [A.9shows the results of the prediction model obtained from Group
2. This model explains the change variance of around 75 percent and shows an adjusted R? of 0.74. The goodness-
of-the-fit of the prediction model in Group 2 is considerably higher than that of the prediction models in Group 1
because smaller data instances were used to create the model.

[Interpretation of Results.]

In the experiment, we divided the data set into two groups, one with comparatively more complex and the
other with comparatively less complex inheritance relationships and polymorphism, in order to investigate the
effects of the BDM according to the intensity of inheritance relationships and polymorphism. Intensity of use
of inheritance relationships and polymorphism can be explained through the attributes (i.e., inheritance- and
polymorphism-related metrics) used for K-means clustering groups; PF and NOC were used for characterizing

each group, as mentioned in Subsection [A.4] PF equals the number of actual method overrides divided by the

— 85 —

Table A.8: Prediction model using existing metrics and BDM in Group 1.

Unstandardized Standardized

coefficients coefficients
Selected variables B Std. Error Beta t Sig.
(Constant) .048 .053 .894 372
cocC .050 011 214 4.632 .000
BDM .019 .008 .108 2431 .000
PProtM -.012 .004 -.144 -3.263 .001
NOC 202 .042 206 4.811 .000
MNOL .120 .029 264 4.114 .000
WMC -.017 .004 -.361 -3.931 .000
NORM .008 .003 184 2465 014

Table A.9: Group 2 prediction model (The result is same whether the BDM is used or not because the BDM is not

included in the model).

Unstandardized Standardized

coefficients coefficients
Selected variables B Std. Error Beta t Sig.
(Constant) -1.211 .397 -3.052 .003
NOO -013 .003 -.307 -4.280 .000
CL .021 .004 571 5.393 .000
NOIS 816 .107 1.252 7.615 .000
RFC -.139 .024 -.798 -5.832 .000

maximum number of possible method overrides and is calculated as a fraction. The PF value increases as the
system uses method overriding; if the system overrides everything, the PF is 100%. If subclasses seldom override
their parent’s methods, PF will be low. NOC equals the number of immediate subclasses derived from a base
class and measures the breadth of a class hierarchy. Conversely, DIT measures the depth. Therefore, it can be
concluded that Group 1 contains relatively complex inheritance relationships and polymorphism than Group 2
since the former has higher PF and NOC values than the latter.

It was determined that the BDM is a significant indicator as it helped to improve the accuracy of change-
proneness prediction in Group 1 only. This result was anticipated because in Group 1, the system redefines the
parent’s methods more often(i.e., high PF) and inherits parent classes more often (i.e., high NOC) than the system,
in Group 2. In short, Group 1 contains high degree of inheritance relationships and polymorphism, which may be
the reason for the high probability that dynamic binding will occur. In Group 2, the BDM could not be selected
as a variable to explain the variances in change-proneness. This indicates that the BDM is no more useful than
existing metrics in systems that contain low degree of inheritance relationships or polymorphism. By analyzing
the results of the experiment, we reached the conclusion that the BDM can help accurately predict changes when
the system contains high degree of inheritance relationships and polymorphism. The reason for improving the

accuracy of change-proneness prediction is the BDM’s feature enabling a class of the object sending a message to

— 86 —

be bound to the class that actually implements the method of the message, as mentioned in Subsection[A.T] To put

the point another way, the BDM is a specific measure for a consideration of the dynamic behavior of the system.

Discussion

In the case study, we showed that the BDM is the significant indicator for predicting change-proneness when
the system contains high degree of inheritance relationships and polymorphism. However, it is not possible to
determine the exact thresholds of the system’s high degree of inheritance relationships and polymorphism because
these thresholds are relative and empirical. However, we do not need specific guidelines that tell us when to use
the BDM in change-proneness prediction. The BDM is an additional variable that may be used in conjunction
with existing metrics for explaining variance in change-proneness for systems where dynamic binding is likely to
occur. When constructing a change-proneness prediction model, the BDM is not selected if it cannot capture any
features over and above those captured by existing metrics. In other words, the BDM is selected as a significant
variable only if it helps to improve the accuracy of change-proneness prediction in addition to existing metrics.

In the case study, we used reversed UML models that were obtained from source codes, even though model-
based change-proneness prediction was the goal of the study. This is because, in practice, most legacy systems
which have been developed and maintained for a long period of time do not have well documented design models,
especially for SDs and IODs. It is worth reiterating that an IOD is specified from the early stages of software
development and cannot be reversed from source codes. If an IOD specified with the Expected Execution Rate in
each SD is available, a more accurate BDM may be obtained. In the future, we plan to use the UML models which
will soon be available from the Repository for Model-Driven Development (REMODD) project [30] in order to
explore the usefulness of the BDM for model-based change-proneness prediction.

The fitness of the models for model-based change-proneness prediction is rather low compared to models for
code-based change-proneness prediction. This is because the information extracted from UML models is not as
sufficient for change-proneness prediction as the information from source codes. If other metrics derivable from
only source codes were considered when building the change-proneness prediction model, the R? values would
be higher. For example, SLOC, which indicates the size of the class, is known as a significant indicator to affect
change-proneness [4]. Of course, the goal of this study is to determine whether the BDM helps to obtain a better
model fit. Therefore, we need to see that it provides an improved predictive model when compared to models
considering only existing metrics that are available on UML models. This provides the benefit of early change-
proneness prediction at the moment a design model becomes available, without the necessity of implementing
source codes.

The results from our earlier study [40] on JFreeChart [34] also showed that the BDM is a strong indicator
and complementary to C&K metrics for explaining the variance of changes. In this paper, we performed the new
experiment to compare the effect of the BDM with varying degrees of inheritance relationships and polymor-
phism. We used another system, because complex dynamic bindings may not occur in the system examined in the

previous study, JFreeChart, since it is the graphic library for generating various types of charts. In other words,

— 87 —

in JFreeChart, dependencies occurred by method calling would be simple. In our previous paper, we only used
C&K metrics as the existing metrics. However, in this case study, we used more metrics to confirm that the BDM

is effective with regard to change-proneness prediction.

— 88 —

e, oldd HAde 2z e FL4E& dF3] AsA
T el A E Y S AME S ol AAANF Az ES o) HAE WA R P52 WA A
FoM FARFAE FEANTIAL FA RS WS AL AR FA] AZE (time-to-market) £

H A= AANAF 2z EY] AAZA HHEFH A H ubd (FYESY TEFZ AHET I E
H317] 93] 8= F th (top-down)I} HE ¢

(bottom-up) 412 A HETE A MAZ, F e PAL AT AL PN, AHNAG £z e o]
4 AP EL AN 8258 AARY 7] A Fe2Y ewistio) @ FHEL Mo E YAE
9 ¥R 2 ¥t 2 ATt dAEY 8 TEL Wase 220 22 AL (entty)

GA A

A 3te], AFERF Al U] £ (user scenario) 2} AF
o} 183 AEE NoR ALEEL AFeT ol B AN EL FHOE AED Fu L
A F uAe, B g BAL Ay 3 7
I =gy, agz o2 A9 Hof =3 FF (maximal independent set) 7} '3 -S 7| RFS & 3}
A=l Fefael 22 AAEE (entitiy) S5 15 Fohs e L5t dEEE 53 g
Eol e A4 71EY AU EY g4 ot 2
HE T g3} o] &A (refactoring effect dependency) & 11
Bl 52 7] 284 (elementary)]| HEH S TF 0= 5]
ol PHERH S AWM + Jhsotrt viAHe R, A HHAEY STHIE FoA AR
g gtet o] & 915to], 7] 2 2 E 7 59| 3 7Hassessment) B FF i A (impact
analysis)E A/ AT 2 A th9] (multiple) S| HEH S Hele + P S HEH 3 F7F 2 ¢
= (refactoring effect evaluation framework) FE] 2 1 ¢+3t). 2|HET 7 F7 =g d Y
7129 e HE o] §RE WEYX AME o] §5te] P, o] & o
EYES XTT AF T B RAERSAS AL E 5 e IS A"t
A| k3 ¥ 2412 jEdit, Columba, JGITH 22 A 7]2] 2 Z A =2 A Eof U] 3to] %
=S

A4 2A2RH T4 ARV aRHor FARSAS N F e FAEY LS st =30

)

o
N
o
32
o
X
:g

)
I-ﬂJ

— 89—

ofu

g 2ol A 2
WAL o] whe] 3| E Y2 g4 (fitness function) ghS & 2] 3L,

iy
o

5]

To
T
N

X7} =}

CEE

e A% el AR

o9&

3}

__OA

!

—90—

R

bl MLAL 23] A B

fsine
o}

(Q

20059 3 7}o]~E SE LAB W73 w4l A7 Ao Atz

J)

A

Utk Aol A &= 2t

285

=l
=

A zkol

Z=
=]

o Ao} AR MR Ao A%

R
Y
Ho

Ko

WA wha) 3}

Al vheg

Uk ZedAA A9 AT Lol

2
o]

120

jo

2 wd ARRA 9AA Aobe

°

oF
2

>

vl

Aol Al Al

K-

=
o

]

Huth =3 A7

wihe =

o

oy

Z2 X9

;O.._H
&

X
g
o

o}
!

olJ
N

o
R

o] A

Zulot 575

oANA A s T A2 A

o
2

?l_

A3 5

1513
-

A A7 wAbd AR YU e L3t

N

[e]

749 7

o FHA™ F o3y, B R ol et FH o] o A= AL

3]
=

A7] B 27 H P 200 F B ok

X
-

e Ao Al

s

o g AES] A BT A

BRI E

= ads

ke

Az

Mo
T
o|
0

<
o

TR

ﬁo

o}
N

o], A4 2

o] Holz 94

=
K3

o] 7]

], Awle], A

] efjuim A4

[e] =
des 5573

s we

X

], 5%

Ut =3 AAAN A 24 A

=, 7|20

SEEE AR

2} a7}

FHBA

Ea
=]

%32 ke

il

& A7

=AY F

]

T X

oo A

fai3
of

5o uhFe AL,
EEERER L

Ao 2 3| Abel| tf 5fod

a}

SUt =3 #{43 AAE,

£

7FE2 32, (A)EE, (D

T

ZFsivbrt el e WSy ok 18 A) E gl A

Jol e

o7 od
Nguyen Minh Chauol| 7| = ZFAFHU T}, 2hA} 12

]

3
=

CEEEE

Fol Aol A o] 29

Utk shxete 2. 87 AW Al Aol wol

Y

5

g o 02

Folw

T

E’_].‘

A

=
—

Eay
=]

¥ 50] antg)
kAT, AR, o %, ol g, AN A A= ZAte) B Aguch

3 o]obr) % Bo] 5

=
T

12 91t thotol

3|

oA
=

s

o

Aol Q1A AR AT

—9] -

L

6‘_

o

71, @4, 78 ok, A el BE

%

~

o
[}

<, wl

whgh o,

=

]

P
!

)Z] @_‘ _?_BH}’

[e)

a

<, (

A, At Adul, Ao A, =

Eay

[e)

W}, Marew, Khanh, Giang,

o

a-

=
=

FA17]
. 3] &7 2t} #A o) R8sl

il
o)
HiK

o
!

ol

T

=
AN

z
.

o} % o] 2.2 u}
wh, 22 < whol 7
HhgU o,

2} 7A%7)

o, GAHEE

=2

=

]

%3

X

T

o}

15

T
piy

o

d A= o g
5 ol A} vhe] Fnpa

i

3
Qr

2
T

=
S

=
=

g o] (Weclay Inc.)

HFgUTh A o} AFEA

=

=

3, % o

o o
7H8 FEA AL,

E
=

=
=

i
o},

°

BERE

=3 R,) A, AR A ol AT 2t o

.
<2 Aol 3 B3 A A2, WFel A vhal 34 F9 ()FE, = L)

uho] A} ofufj @1 X ZFH99 T7E AW mme] Frl Ay, T3 ZFE I 3] Akl A e @

i

o=
L

S}
=

1l
=

d

%

1o %

o
=4

Aol ey &4 o)k A9 of

[e3]
=4

o
{Jz

)

—

3
=

o
=]

]_

0|
a
7

Aol A=A Al A8

9] 1 ma AT W el A =

1

z
!

]

QuThAS
o) 2.,
Bzl g

A
[S)

S

=

, 24 Ay,

Sarah, Sungmin 14, David Qu}, &2} Ay, ARl o],

O o

ST WA Qo] Blol A 4%

71, 7}

q

o] E AAstarL oA 719 F4

Eay

BEAE ZAY 4
=

=

=

)
%)
o]

]

fd
=
U

Ll

4

Utk 283 7<% 9w, UBCoA I =

ob7 A 9L %
wh, AE ok,

Eay

2135

=

=

A2
ol 7

i
NFoR A Eol §ol ke AA7HA A

pal

=
AN
=
=

7}
SRS

L.

Utk g1 A Ae

ER

kg

I, Akl g
& 2 A

=
a

%o

(o)A A4, Hyun Hwa U ol A] ZHAF A3 ot

upxeko =, A of Aleta}

o

PR

o)

$15}e] 7]
Qol, A

Al Z

=

o

=
=

]
?j‘/]’
el
5
ECE

olJ

o

v

o

Aol A AL Ab

Zquh.

]

L

P

Aol Fare] A FE oA H e

ahgh o,

i
o)

K-

o

of7]a A+

92 _

11

M

E-mail

1997. 3

2000. 3

2005. 3

2007. 3

2004. 2

2004. 8.

2007. 3

2011. 3

ifl

T 4~

.—2000.

.—2004.

.—2007.

.—2013.

.—2004.

—2004.

.—2007.

.—2012.

3} o} &
19813 9¥ 30

LM

A7 RAA

HeN BT HLRE
A7 A BT T 75 940 1095 3015

arhan @se kaist.ac.kr

S}
cl

1%

2. AgdstE ApEdE REnS s
2. AZdsta AxE 3 (B.S)
(Graduation Rank: No. 3 among all Computer Science students)

2. s=Istr| &g A4rEra (M.S.) (advisor: Doo-Hwan Bae)
Thesis: Behavioral Dependency Measurement in UML 2.0 Sequence Diagrams for Change-

proneness Prediction

8. =343 7]=Y A4He} (Ph.D.) (advisor: Doo-Hwan Bae)
Thesis: Identification and Selection of Refactorings for Improving Maintainability of

Object-Oriented Software

2 8

4. Intern, ZIO Interactive, Seoul, Korea
10. Intern, Peace Corps (Headquarters), Washington, D.C., USA
12. Chair of the Ph.D students of Computer Science Department, KAIST, Daejeon, Korea

8. SAMSUNG Scholarship Program, SAMSUNG Electronics (supported by Video Display

Division), Korea

—-03 —

SRS

Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, Jang-Eui Hong, Measuring behavioral dependency for im-
proving change-proneness prediction in UML-based design models, Journal of Systems and Software (JSS),
Vol. 83, No. 2, pp. 222-234, Feb. 2010. (http://dx.doi.org/10.1016/].jss.2009.09.038)

In-Gwon Song, Sang-Uk Jeon, Ah-Rim Han, Doo-Hwan Bae, An approach to identifying causes of implied
scenarios using unenforceable orders, Information and Software Technology (IST), Vol. 53, No. 6, pp. 666-
681, Jun. 2011. (http://dx.doi.org/10.1016/j.infsof.2010.11.007)

Ah-Rim Han, Doo-Hwan Bae, Dynamic profiling-based approach to identifying cost-effective refactorings,
Information and Software Technology (IST), Vol. 55, No. 6, pp. 966-985, Jun. 2013.
(http://dx.doi.org/10.1016/j.infsof.2012.12.002)

53 8 5

Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, Jang-Eui Hong, Behavioral Dependency Measurement for
Change-proneness Prediction in UML 2.0 Design Models, Proceedings of the 32nd Annual IEEE Interna-
tional Computer Software and Applications, pp. 76-83, Jul. 2008. (19.5% acceptance rate) (Invited to the
Special Issue of Journal of Systems and Software (JSS))

Ah-Rim Han, Doo-Hwan Bae, Automatic selection of multiple refactorings by considering refactoring effect
dependency, 28th IEEE/ACM International Conference on Automated Software Engineering (ASE) 2013,

submitted.

Ah-Rim Han, Sang-Uk Jeon, Jang-Eui Hong, Doo-Hwan Bae, Timing Consistency Checking in UML 2.0
Behavioral Models using OCL, Proceedings of the Korea Computer Congress (KCC), Vol. 33, No. 1, pp.
181-183, Jun. 2006. (in Korean)

Ah-Rim Han, Dong-Won Kang, Hyeon-Jeong Kim, Doo-Hwan Bae, An Approach to Extract Similar Process
for Knowledge-Based Software Process Tailoring, Proceedings of Workshop on Korea Software Engineering

Technology, Vol.5, No. 1, pp. 42-52, Aug. 2007. (in Korean)

—94—

Hyung-In Thm, In-Gwon Song, Sang-Uk Jeon, Ah-Rim Han, Jang-Eui Hong, Doo-Hwan Bae, A Technique
of Power Consumption Estimation for Embedded Software Design Models, Proceedings of 2008 Korea Con-

ference on Software Engineering (KCSE), Vol. 10, No. 1, pp. 113-120, Feb. 2008. (in Korean)

Hyung-In Thm, Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, Jang-Eui Hong, Instruction Pattern-Based
Power Consumption Estimation for Embedded Software Design Models, Proceedings of 2009 Korea Confer-
ence on Software Engineering (KCSE), Vol. 11, No. 1, pp. 122-129, Feb. 2009. (in Korean)

—-05 —

