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Abstract—To automate the refactoring identification process, a large number of candidates need to be compared. Such an overhead

can make the refactoring approach impractical if the software size is large and the computational load of a fitness function is

substantial. In this paper, we propose a two-phase assessment approach to improving the efficiency of the process. For each iteration

of the refactoring process, refactoring candidates are preliminarily assessed using a lightweight, fast delta assessment method called

the Delta Table. Using multiple Delta Tables, candidates to be evaluated with a fitness function are selected. A refactoring can be

selected either interactively by the developer or automatically by choosing the best refactoring, and the refactorings are applied one

after another in a stepwise fashion. The Delta Table is the key concept enabling a two-phase assessment approach because of its

ability to quickly calculate the varying amounts of maintainability provided by each refactoring candidate. Our approach has been

evaluated for three large-scale open-source projects. The results convincingly show that the proposed approach is efficient because

it saves a considerable time while still achieving the same amount of fitness improvement as the approach examining all possible

candidates.

Index Terms—Refactoring assessment, refactoring identification, maintainability improvement

Ç

1 INTRODUCTION

SOFTWARE refactoring is widely used in the industry, but
still, it has been a manual task that varies greatly depend-

ing on the expertise of software engineers. To address this
problem, the research community has made efforts to auto-
mate the process.

Many refactoring identification studies attempt to auto-
matically suggest the refactoring candidates that can be
safely applied for delivering improvement on maintainabil-
ity; thus, developers can make final decisions on which
refactorings are to be applied based on the suggested refac-
toring candidates. Refactoring opportunities can be identi-
fied by applying design patterns [1], [2], removing code
clones [3], [4], [5], [6], [7], [8], and resolving bad smells [9]
(e.g., Feature Envy [10], [11] and State Checking [12]); alter-
natively, when there is no information regarding which
refactoring candidates may improve maintainability, we
may consider all possible moves of methods to classes
existing in a system.

The effects of the application for the refactoring opportu-
nities are assessed using a fitness function chosen as the
guideline for maintainability improvement. Various types of
maintainability evaluation metrics or functions—for exam-
ple, a coupling metric called Message Passing Coupling
(MPC) [13], a cohesion metric called Connectivity [14], or the

Entity Placement metric (EPM) [10]—can be used as fitness
functions. However, evaluating the effects of numerous trials
for the application of refactoring candidates using a fitness
function incurs expensive computational costs, and these
costs grow exponentially as the system becomes larger.
In fact, finding the optimal sequence of refactorings by
exhaustively investigating all possible sequences is a known
NP-hard problem [5].

Even when locally searching refactoring candidates and
selecting refactorings one after another in a stepwise manner
for each iteration of the refactoring identification process, as
done in our approach, the accumulated number of assessed
candidates will increase drastically as the system becomes
larger. For instance, in our experiment, the required time for
assessing a Move Method refactoring candidate for the fit-
ness function of Connectivity in Apache Ant is 0.07 seconds,
which seems small and manageable. However, an average
number of 1,948 candidates must be assessed for each itera-
tion, and it takes 4.15 hours (14,930 seconds) in total after
iterating 100 runs.

The complexity of fitness functions for evaluating the
maintainability of a system’s design is another factor to con-
sider. A chosen fitness function may require high computa-
tional cost, for example, if it is a weighted sum of several
metrics. Moreover, in the search-based software engineering
(SBSE) community, the recent research trend is to solve opti-
mization problems involving multiple conflicting objectives
[15], [16], [17], [18], [19], [20], [21]. Such assessment requires
an increased computational overhead; thus, the refactoring
identification process needs to be efficient and scalable.

In this paper, we propose a two-phase assessment
approach for improving the efficiency of computation in
the refactoring identification process. In the first phase, the
effects of refactoring candidates for all possible moves of
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entities (i.e., methods and fields) to other classes are pre-
evaluated using various types of Delta Tables. Each Delta
Table is constructed of one type of dependency relation
(e.g., method calls of entities and shared variables between
methods) to fit the particular goal of a fitness function (e.g.,
MPC, EPM, and Connectivity metrics). Various types of
Delta Tables make up the Multi-criteria Delta Table that can
take multiple dependency relations into account. Then, the
search space of refactoring candidates is reduced by select-
ing the candidates that are more likely to improve maintain-
ability and highly ranked in the Multi-criteria Delta Table.
In the second phase, only the chosen candidates are evalu-
ated using a fitness function. This process is iterated to
select the next refactorings, and the refactorings are applied
one after another in a stepwise fashion.

The Delta Table is a core concept in the two-phase assess-
ment approach because of its ability to rapidly calculating
the values for the delta of maintainability. An element in
each Delta Table represents a candidate for Move Method
refactoring or Move Field refactoring and its value denotes
the changed amount (D) of maintainability, which in turn
represents the number of links across the classes after mov-
ing an entity to a target classes. The Delta Table can be
quickly calculated at once by mapping the software design
into membership and link matrices and multiplying those
matrices. The Delta Table is computed very quickly because
various scientific and numerical techniques, such as the spe-
cial libraries of Eigen [22], help to accelerate the speed of the
matrix computation. The benefit of using the Delta Tables
exceeds the overhead of computing them, as will be shown
in the experiment. Consequently, the elements in the Delta
Table are approximate measures, but they are sufficient to
preliminarily assess the effects of the application of refactor-
ing candidates in an extremely short time. The Delta Tables
help identify the refactoring candidates that are more likely
to have better values in a fitness function and, indeed, to
improvemaintainability; thus, they can be used to reduce the
number of refactoring candidates to be evaluatedwith the fit-
ness function, in order to increase computational efficiency.

We applied our approach to three large (e.g., between
135K and 222K lines of code) open-source projects, namely
ApacheAnt [23],JGit [24], andJHotDraw [25]. The experi-
ments revealed that our approach is efficient in that it saves a
considerable time while still achieving the same amount
of fitness improvement as the approach examining all possi-
ble candidates (i.e., the no-reduction approach). This time
savings increase as the candidate size becomes larger and
more complex fitness functions are used. Furthermore, we
observed that as the restriction size of refactoring candidates
in theMulti-criteria Delta Table is reduced, denoting that the
number of candidates to be assessed using fitness functions
has decreased, the efficiency of the rate of improvement on
fitness functions with respect to time is increased. However,
a too-small size can cause the early process termination;
thus, it is important to determine the proper size. Finally,
with respect to the performance of the Multi-criteria Delta
Table as a filter for the restriction, our approach finds refac-
toring candidates that improve the fitness functions with a
high probability.

This paper is organized as follows. Section 2 explains
the definition and features of the Delta Tables. Section 3

discusses the refactoring identification process used in our
paper, and Section 4 explains the two-phase assessment
approach in detail. In Section 5, we present the experiment
conducted to evaluate the proposed approach and consider
the obtained results. Section 6 contains a discussion of
related studies. Finally, we conclude and discuss future
research in Section 7.

2 DELTA TABLE 2.0: A LIGHTWEIGHT

ASSESSMENT METHOD

We first explain the basic definition of the Delta Table which
is a preliminary version that has been presented in previous
papers [26], [27]. We formalize the equation and provide
the explanation of the meaning of each element constituting
it. We then present version 2.0 of the changed Delta Table
that reflects new features to the following three aspects:
1) Multi-criteria Delta Table, 2) adaptive Delta Tables for
extending to other types of refactorings, and 3) performance
improvement. The efficiency of the assessment method is
the main concern of this paper; thus, the rapid calculation of
the Delta Table is extremely important, and we put exten-
sive effort into performance improvement.

2.1 Basic Definition of the Delta Table

When two entities, such as methods and fields, have depen-
dency relations, they are connected using a link and consid-
ered to be located within the same class for higher cohesive
and less coupled arrangement of those entities. Counting
the number of dependencies between classes is sufficient to
estimate the code quality of structural properness. In this
context, the number of links across the classes naturally repre-
sents the lack of degree of dependency among entities in the
same class (lack of cohesion), and at the same time, the
degree of dependency among entities of different classes
(coupling). The number of links across the classes that each
element of the Delta Table has should be minimized, and
this number can be used as an approximate measure for
assessing the maintainability of the system’s design.

By parsing the object-oriented source codes, all entities
(i.e., methods and fields) and classes existing in a system
are captured, and the membership and link matrices
are constructed. By calculating these matrices, the Delta
Table matrix is obtained for all possible moving methods
and fields.

Each element in the Delta Table (D) represents a Move
Method refactoring or a Move Field refactoring where the
entity of a method/field (row) moves to the target class
(column). The value of each element Dij indicates the
variance (D) of the number of links across the classes when
moving method i or field i to class j. The size of the Delta
Table is determined by jES j � jCSj, where ES and CS denote
all entities and classes in the system, respectively. The Delta
Table contains all possible moves of methods and fields in
the system, and the value of each element can be used to
determine the refactorings that result in greater reduction of
the number of links across the classes.

An element in a membership matrix (M) represents that
an entity (row) belongs to a particular class (column). Ele-
ment Mij is 1 when entity i is placed in class j, and all the
elements for entity i become 0.
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An element in a link matrix (L) denotes that an entity
(row) has a dependency relation to an entity (column). Exam-
ples of dependency relations are method calls and shared
fields between methods. Element Lij is 1 when entity i has a
dependency relation to entity j. The direction of the links is
not distinguished, and the link matrix is symmetric. When
two entities have relations to each other in a bi-directional
way, then the both elements become 2.

By the multiplication of the link matrix and the member-
ship matrix (L�M), we can obtain the number of internal
or external links that an entity has with entities located in its
class or other classes (LInt �M or LExt �M), respectively.
When entity i has dependency relations with the entities
locating in class j, the number of dependency relations can
be calculated as follows:

ðL�MÞij ¼
XjES j

k¼1
LikMkj:

The inverse function, Inv, is used to invert the values of
LInt �M. Each element in LInt �M indicates the number of
internal links where an entity has dependency relations
with entities located in the class itself. This means that mov-
ing the entity to other classes will potentially increase the
external links in the system. Thus, to obtain the effects after
moving entity i with internal link(s), let ðLInt �MÞij ¼ n
( 6¼ 0); the inverse function changes the elements as follows:
ðLInt �MÞij  0 and ðLInt �MÞik  n, where k 6¼ j ^ for all
k 2 {1; . . . ; jCSj}. The element in LExt �M indicates the num-
ber of external links where an entity has dependency rela-
tions with entities located in other classes; thus, moving the
entity to those classes reduces the number of links across
the classes.

Finally, each element of the number of links across the
classes in the Delta Table (D) is calculated as given in

D ¼ InvðLInt �MÞ � LExt �M: (1)

The illustrative example for modeling system’s design
into link and membership matrices is shown in Fig. 1. The

system’s design in Fig. 1a is mapped to the membership
matrix of Fig. 1d, the internal link matrix of Fig. 1b, and the
external link matrix of Fig. 1c. In the membership matrix,
the entities and classes existing in the system are listed in
rows and columns. Four entities and five entities are located
in class A and class B. In the internal and external matrices,
five internal links and three external links are present, and
those matrices are symmetric. Fig. 2 shows the calculation
process using the modeling matrices. By multiplying the
link matrix and the membership matrix, Figs. 2a and 2b are
obtained for the internal and external types, respectively.
To reflect the effects when moving internal links to other
classes, the inverse function is applied to Fig. 2a, and Fig. 2c
is obtained. Moving entities to the classes having external
links reduces the number of links across the classes in the
system; thus, the Delta Table in Fig. 2d is calculated by sub-
tracting Fig. 2b from Fig. 2c.

To put it briefly, in the Delta Table, an estimate of main-
tainability variance that can be expected in the application

Fig. 1. Modeling a design model using matrices.

Fig. 2. Delta table calculation.
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of a refactoring candidate, is calculated as jij - jej, where jij
and jej indicate the number of internal (e.g., calls to methods
defined in the same class) and external relations (e.g., calls
to methods defined in the target class), respectively. To this
end, a refactoring candidate with a smaller and negative
value in the Delta Table is a more promising candidate
when it comes to improving maintainability. Candidates
with zero or positive values are regarded as the refactoring
candidates that no longer improve maintainability.

It is important to emphasize that by multiplying the link
matrix and the membership matrix, we can obtain informa-
tion about the classes to which the entities associated with
each entity belong, which is the fundamental basis for esti-
mating the potential effects of moving methods with the
number of links across the classes. Thus, to simulate the
application for one step of a refactoring, only themembership
information the class to which an entity belongs needs to be
changed;we can then easily obtain the number of the internal
and external links by thematrixmultiplication very quickly.

2.2 New Features

2.2.1 Multi-Criteria Delta Table

We devise the Multi-criteria Delta Table to adopt various
types of Delta Tables. Given a specific fitness function, the
multiple types of link matrices are selected among many
kinds of dependency relations to fit the fitness function.
The Delta Table is constructed of each type of dependency
relation, and multiple Delta Tables make up the Multi-cri-
teria Delta Table. This increases the flexibility of the usage
of the Delta Tables. The detailed method for ranking refac-
toring candidates in the Multi-criteria Delta Table will be
explained in Section 4.1.2.

2.2.2 Adaptive Delta Table for Extending to Other

Types of Refactorings

The large-scale refactoring consists of elementary-level
refactorings, such as Move Method and Move Field refac-
torings. This is also supported by other literature, as “each of
the classes consists of a set of methods moved from the original
class, and therefore, the Move Method refactoring is a special case
of the more general Extract Class refactoring” [28]. Each ele-
ment of the Delta Table is designed to have the maintain-
ability variance after moving a field or a method; thus, it
can be extended to assess other types of refactorings, such
as Extract Class and Extract Method refactorings.

To extend it to assess other types of refactorings, the size
of the Delta Table should be adjustable to adapt the added
or deleted entities or classes. In short, classes, method, and
fields can be newly created or deleted, thus the length of the
rows or columns of the membership, link, and Delta Table
matrices can be changed. The techniques for the internal
implementation to make the efficient adaptive Delta Table
are described in Section 2.2.3.

The change amounts after applying a big refactoring can
be obtained by applying Move Field refactorings or Move
Method refactorings, which are constituents of the big refac-
toring, one after another. For each move for a method or a
field, the membership and link matrices are updated, and
only the changed elements of the Delta Table are calculated
by multiplying those matrices.

The illustrative example of applying Extract Class refac-
toring is presented in Fig. 3. The code before and after
applying the refactoring is shown in Fig. 3a. The method
getTelephoneNumber() is extracted from the class Per-
son and moved to the newly created class Telephone-

Number. The fields areaCode and number are moved to
class TelephoneNumber, and the extracted method is
renamed to getDisplayableString(). In the old class
Person, the new field telephoneNumber with the Tele-
phoneNumber class type is created and a getter method,
getTelephoneNumber(), is added to retrieve the object.
As a result, after applying the Extract Class refactoring, the
membership and link matrices in Fig. 3b are adapted as the
matrices in Fig. 3c.

It should be noted that the automated identification of
opportunities in big refactorings, such as finding logical
units of data that are grouped together for Extract Class
refactoring, is beyond the scope of this paper. When those
types of refactoring candidates are given, we can use the
Delta Tables to assess only the impact of the refactoring
candidates.

2.2.3 Performance Improvement

The ability to efficiently assess a large number of refactoring
candidates is the most important contribution of this paper.
In the actual implementation, we applied new techniques
for maximizing performance.

Merging Internal and External Link Matrices. Except for
newly established relations for the added entities, the rela-
tions of the entities remain the same. By applying a refac-
toring, the fact that the dependency relation involves an
entity referring to another entity does not change; rather,
only the membership information that states which class
an entity belongs to is altered. Thus, the link matrices do
not necessarily need to be updated for each application of
a refactoring.

We merged the separate internal and external matrices,
LInt and LExt, into one link matrix. Updating internal and
external link matrices and multiplying those link matrices
with a membership matrix in every application of a refactor-
ing, for instance, results in a high computational cost. The
Delta Table calculation in Equation (1) is equivalent to
Equation (2), and it can be converted to Equation (3), which
consists of matrices of L andM

D ¼ LInt � InvðMÞ � LExt �M: (2)

D ¼ ðL�MM>
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{LInt

Þ � ð1�MÞ � ðL� ð1�MM>Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{LExt

Þ �M: (3)

Each element constituting the Equation (3) is explained as
follows.

� �: element-wise multiplication
� 1: all-ones matrix
� M>: transposedM
� 1�M: InvðMÞ
� MM>: multiplication ofM andM>

� 1�MM>: convertedMM>

Here, 1 represents the matrix over the real numbers,
where every element is equal to one. Subtracting M from 1

1004 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018



produces the converted matrix of M, which is equivalent to
InvðMÞ, by changing 0! 1 and 1! 0.

As shown in Fig. 4, it is interesting that by multiplyingM
and M>, we can obtain the matrix in which each element
ðMM>Þij is 1 when entity i and entity j are in the same class.
Consequently, the element-wise multiplication ofMM> and
L produces LInt. In contrast to this, in the converted matrix
of MM>, 1�MM>, each element is 1 when entity i and
entity j are located in different classes. Thus, the element-
wise multiplication of ð1�MM>Þwith L produces LExt.

Refactoring Impact Analysis. For each iteration of the refac-
toring process, a refactoring is selected and the refactoring
is applied by changing the membership matrix. Thus, to
reflect the changes, the Delta Table should be recalculated.

For efficient computation, we need to identify the
changed elements after applying a refactoring, which is
regarded as refactoring impact analysis. Only these elements
are used to recalculate the Delta Table.

When moving a method m from a class c1 (source class)
to a class c2 (target class), let R(m) be the entities that are
affected by applying the refactoring, that is, R(m) = {e j
(m; e) 2 L and (e 2 c1 or e 2 c2)}. Then, the elements that are

need to be examined for recalculating the Delta Table are as
follows: L0 = {Lij, i 2 R(m) and j 2 R(m)} and M0 = {Mij, i 2
R(m) and j = c1 or c2}.

Matrix Computation Using Special Libraries. To accelerate
the speed, the C++ library, Eigen [22], is used for matrix
computation. Compared to the previous version, which
used SciPy [29] libraries implemented for Python, Eigen sig-
nificantly improves the speed of the system due to features
described below.

Eigen [22] supports resizing thematrix, which is an essen-
tial function for constructing the effective adaptive Delta
Table (Section 2.2.2). To assess the impact of Extract Class or
Extract Method refactorings, the size of the membership and
link matrices should be changed for added/deleted entities
or classes. Without resizing, entire matrices would need to
be copied in the memory while executing, to adapt even a
small number of entities or classes, which is inefficient.

Furthermore, Eigen [22] provides the view concept,
which allows read-write access to a part of the matrix (i.e.,
submatrix such as a column or a row of a matrix). This is a
critical operation when only a few elements are changed
for the Delta Table computation. Most of the link and

Fig. 3. Adapting membership and link matrices for extract class refactoring.
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membership matrices are sparse matrices; however, many
of the libraries support only dense matrices, which are com-
parably easy to implement. Eigen supports efficient subma-
trix computation via the view concept for sparse matrices,
which is useful after performing the refactoring impact
analysis, and it consequently has a major effect on speeding
up our approach.

3 REFACTORING IDENTIFICATION PROCESS

A simpleway to find the best sequence refactorings thatmost
improves maintainability is to generate all possible sched-
ules and select the most beneficial one; however, such a
brute-force approach is obviously time consuming [5]. Theo-
retically, when the number of possible refactorings is k, the
impact of the design quality for the application of k! (k-per-
mutations) number of sequences of refactoring candidates
should be assessed. As the number of refactorings increases,
the number of possible refactoring schedules increases expo-
nentially. Therefore, scheduling refactorings by investigat-
ing all possible sequences may becomeNP-hard.

The search-based refactoring studies in [5], [30], [31], [32]
use global search techniques, such as a genetic algorithm
(GA). To find the optimal refactoring sequence (or an appro-
priate refactoring schedule) with a reasonable computa-
tional cost, they first generate the sequences of refactorings
using the GA and then evaluate the effects of the application
on those sequences. However, if solutions are generated
without considering the dependencies of the relations
between entities, many infeasible solutions would be pro-
duced, which thus might require additional repair costs in
the practical application of the chosen order of refactorings.
This problem is also noted in [33], which demonstrates
that the core operations of a traditional GA are based on
random selections; thus, the results of GA scheduling may
correspond to infeasible solutions. The researchers in that
study also pointed out the performance degradation issue
that arises when considering many constraints.

For each iteration of the refactoring identification process,
our approach locally searches the refactoring candidates,

and a refactoring is selected—either interactively by accept-
ing a developer’s feedback or automatically by choosing the
refactoring that improves the maintainability of a fitness
function to the greatest extent—and the refactoring is
applied. Consequently, the refactorings selected are applied
one after another in a stepwise fashion. This approach
belongs to the family of stepwise refactoring recommenda-
tion techniques [10], [34], [35], [36], [37]. JDeodorant [34], [35]
is one of the most influential research tools for automated
refactoring identification.

The application of refactoring changes the design config-
uration. Thus, the effects of the application for all available
refactoring candidates should be evaluated again at every
step of the refactoring process in order to select the next
refactorings. The whole of the refactoring identification pro-
cess is performed repeatedly and is terminated when there
are no more candidates improving maintainability. Mean-
while, developers can interactively select preferable refac-
torings among the suggested refactoring candidates for
each iteration of the refactoring process, and they can stop
this process when the refactoring goal is accomplished.

3.1 Overall Search Process

Fig. 5 represents the overview of the two-phase assessment
approach in the refactoring identification process. In the first
level, the effects of refactoring candidates of all possible
moves of entities to other classes are preliminarily assessed
using the Delta Tables where elements have approximate
values to estimate the maintainability of the designs trans-
formed byMoveMethod orMove Field refactorings; the can-
didates with the top k% ranked in the Multi-criteria Delta
Table are chosen. In the second level, the chosen candidates
are assessed using a fitness function (e.g., maintainability
evaluation function or metric), which can be regarded as a
rigorous assessment of maintainability.

The proposed approach is presented in relation to the
search-based problem as follows.

Representation of the Solution. For each iteration of the refac-
toring process, a refactoring can be selected either interac-
tively by the developer or automatically by choosing the
refactoring that best suits a fitness function of the maintain-
ability; then, the refactorings are applied one after another in
a stepwise fashion. The final solution is the sequence of
MoveMethod refactorings selected in each process.

Change Operators. For every iteration of the process, the
possible search space is composed of feasible moves of
methods to other classes (i.e., Move Method refactorings)
that can be applied from the current design and that pre-
serve preconditions for behavior preservation and quality
assurance. In similar fashion to [10], [15], [30], we consider
only Move Method refactoring. Move Field refactoring is
excluded because fields are strongly conceptually bound to
the classes in which they are initially placed, and they are
less likely to change once assigned to a class [10]. To provide
suggestions for desirable refactorings in an automatic man-
ner, the trials of refactored designs—each of which can be
transformed by applying a refactoring—are investigated for
obtaining the effects of their application on maintainability.

Fitness Functions. To evaluate the maintainability of the
refactored designs, we have chosen the following metrics
or functions as the fitness functions in the experiment:

Fig. 4. Multiplication of membership matrix and its transposed matrix
denotes the pairs of entities locating in the same class.
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Connectivity (cohesion metric) [14], Message Passing Cou-
pling (MPC) (coupling metric) [13], and Entity Placement
metric (EPM) [10]. In addition to these three measures, the
multi-objective functions for two objectives (e.g., MPC ver-
sus Connectivity, EPM versus MPC, and EPM versus Con-
nectivity) are also used. Since calculating a fitness function
for all possible Move Method refactoring candidates may be
cost intensive, the candidates are preliminarily assessed
using the Delta Tables, and then only the candidates that are
top k% ranked based on theMulti-criteria Delta Table, which
is composed of the Delta Tables, are chosen to be evaluated
with the fitness function. More detailed explanations regard-
ing each fitness function are provided in Section 4.2.

Search Algorithm and Heuristics. Steepest-ascent hill climb-
ing is a local search algorithm in which the search examines
all neighboring solutions and moves to the paths exhibiting
the highest quality improvement [38], [39]. When trying to
automatically select a refactoring, this search technique is
used to find the best refactoring for a fitness function of
maintainability.

When a multi-objective function is used as a fitness func-
tion, one of the refactoring candidates is randomly selected

from the set of Pareto optimal candidates (i.e., Pareto front
or Pareto set). It is important to emphasize that the multi-
objective fitness function does not mean to use the multi-
objective search. For fast and flexible processing, we adopt
the stepwise interactive search, which locally searches refac-
toring candidates and then iteratively selects and applies a
refactoring for each step of the refactoring process. The
rationales to use this search is explained in Section 3.2.

Apart from the search technique, when choosing the can-
didates in the Multi-criteria Delta Table, inferior candidates
(i.e., those ranked below 5 percent) are discarded and
replaced with randomly chosen candidates. Randomness is
useful in that it has the effect of a simulated annealing search
[40] that permits a series of changes that degrade the solution
to allow the search to escape from the local minimum.

We assume that there is no information regarding which
refactoring candidates improve the maintainability; thus, all
possible transformations become the subjects of refactoring
opportunities. In our approach, we use elementary-level
Move Method refactorings.

A refactoring candidate that is highly ranked using the
Delta Tables is not always guaranteed to have a higher

Fig. 5. Overview of the approach using two-phase assessment in the refactoring identification process.
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fitness value. In other words, some candidates may have the
higher values in fitness even though they have not been cho-
sen as promising candidates using the Delta Tables in the
first phase of the assessment. To provide a chance to be
assessed with fitness functions for those candidates, a refac-
toring candidate that has not been selected continuously
through the several iterations is excluded from consider-
ation. This can be implemented by increasing the counter of
the selected refactoring candidate. We made three attempts
(i.e., g = 3) to find a solution. When the counted number of
the refactoring candidates exceeded the specific number g,
the refactoring candidate is excluded as a candidate.

The proposed approach does not refactor an object-
oriented program in a fully automated manner; rather, it
automatically identifies a set of refactoring candidates that
can be safely applied for delivering improvements in main-
tainability. Thus, for every iteration of the refactoring identi-
fication process, the software developers make the final
decision on whether to apply the suggested refactorings. In
short, the developers should examine whether the suggested
refactorings conform to the design practice and principles of
the development team.Although the recommended refactor-
ings are beneficial from a maintainability perspective, the
application of the refactorings can be rejected, if they conflict
with other design principles, such as reusability, flexibility,
or understandability.

3.2 Interactive Local Search Method

We provide the rationales to accommodate the interactive
local search method.

Dependency-Aware Refactoring Selection. The application of
each refactoring changes the design of the program, and
subsequently, the effects of other refactoring candidates are
also changed; some of the candidates become invalid to be
applied, and new refactoring opportunities are introduced.
In evolutionary computation, this phenomenon is known as
epistasis [41], [42]. The effects of the refactoring candidates
should be recalculated for every refactoring application.
Thus, to consider refactoring dependencies, refactorings are
chosen and applied, one for each refactoring process step.

Fast (Online or Real-Time) Processing by Taking the Devel-
oper’s Feedback. As the research trend changes to interactive
and real-time processing methods, fast processing is more
highly valued and is gaining more attention. We assume that
the environment in which this approach is to be used will
have limited (not infinite) resources and time, and in this con-
text, identifying refactorings in order to apply them more
quickly is indeed important. We believe that finding a glob-
ally optimized sequence of refactorings that takes several
hours or days is not practical. Developers would not wait if
the time is too long. Furthermore, interactive selection pro-
vides amore flexiblemethod inwhich developers can actively
make a decision regarding the refactoring application. Our
approach provides a set of refactoring candidates ranked by a
fitness function for each iteration of the process; thus, either
the developers can choose their preference of refactoring to
apply, or they can use the automated executionmode to select
the best one. Developers can also stop performing refactoring
identification at any time, once the goal of the maintainability
improvement reasonably has been accomplished through the
application of the refactorings selected to that point in time.

Note that the aim of the interactive local search approach is
not to find the optimal sequence of refactorings that reach the
maximum improvement inmaintainability.

4 TWO-PHASE REFACTORING ASSESSMENT

In the following sections, we provide a detailed explanation
for each step of the two-phase assessment approach.

4.1 Phase I: Reducing the Search Space of
Refactoring Candidates Using the Multi-Criteria
Delta Table

Fig. 6 illustrates a procedure for identifying possible refac-
toring candidates and ranking them in the Multi-criteria
Delta Table. In order to increase computational efficiency,
the number of refactoring candidates to be evaluated with
a fitness function is restricted to the top k% of the Multi-
criteria Delta Table.

4.1.1 Identifying Possible Refactoring Candidates

ADelta Table is constructed of each type of dependency rela-
tion. All methods existing in the system are considered to be
moved to other classes, and these Move Method refactoring
candidates are the elements of a Delta Table. The candidates
that have passed the behavior preservation preconditions
become the subjects of assessment using a fitness function.
Finally, multiple Delta Tables make up the Multi-criteria
Delta Table, and refactoring candidates in which at least one
of each Delta Table has a negative value are considered. We
refer to them as the possible refactoring candidates.

The possible refactoring candidates are identified as
described below.

1. Calculating Delta Tables. For each type of link matrix, a
Delta Table is calculated following the method explained in
Section 2.1.

In the experiment, three types of dependency relations
are considered, and three Delta Tables are obtained. The
specific dependency relations are established when (1) a
method calls another method, (2) a method accesses a field,
or (3) two methods access the same field.

It is important to emphasize that the major change in ver-
sion 2.0 of the Delta Table is that we adopt a Multi-criteria
Delta Table. Various types of link matrices can be used, and
multiple Delta Tables are obtained, which increases the flex-
ibility in choosing the fitness functions by which developers
aim to accomplish the refactoring goals.

When applying Move Method refactoring, it is a poor
idea to move a method that already exhibits strong cohesion
with the original class; thus, such a cohesive refactoring can-
didate should be assigned a lower priority for moving. To
reduce the effect of a highly cohesive method, the values for
the elements in the Delta Table are adjusted by dividing
them by the number of internal relations, as follows:

jij � jej
jij ; where i 6¼ 0:

When i is zero, the value of the Delta Table is not adjusted.
That is, moving a method with no internal relations will not
increase the external relations of the overall system, and we
do not need to assign a penalty to it.
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For example, let us assume that there are two methods a
and b whose (jij, jej) values are a = (1, 2) and b = (10, 11),
respectively.While the values assigned to the Delta Table are
the same (e.g.,�1) for both methods, method b is apparently
highly cohesive to the original class; thus, it should not be
selected as a candidate for refactoring. Therefore, the impact
of method b should be minimized. The values for methods
a and b are adjusted into 1�2

1 ¼ �1 and 10�11
10 ¼ �0:1, respec-

tively. It is better to select to move method a than method b

as a refactoring candidate.
2. Checking preconditions. Improving the practical applica-

bility of this approach requires stringent preconditions for
behavior preservation and quality assurance. The precondi-
tions defined in [10], [35] are used.

For every iteration of the process, before choosing the
refactoring candidates that should undergo the assessment
using a fitness function, the set of preconditions are checked
if the available refactoring candidates can be applied with-
out changing the systems behavior. When candidates do
not meet the preconditions, then they are not considered for
further assessment.

The Delta Table is extended to adapt other types of refac-
torings, and rigorous and strict preconditions are introduced
for quality assurance, which is essential for considering prac-
tical applicability. Examples of the preconditions include the
condition that the method to be moved should not contain
the assignment of a source class field, or that the method to
be moved should have the one-to-one relationship with the
target class, and so on.

3. Identifying the refactoring candidates in the Multi-criteria
Delta Table. Finally, possible Move Method refactoring can-
didates are identified. As explained in Section 2.1, a refac-
toring candidate with a negative value in each Delta Table
is considered to improve maintainability. Thus, in the
Multi-criteria Delta Table, refactoring candidates in which
at least one of each Delta Table has a negative value are left.

4.1.2 Ranking Refactoring Candidates Using the Multi-

Criteria Delta Table

The refactoring candidates are ranked in the Multi-criteria
Delta Table as described below.

1. Identifying Pareto dominance relations between refactoring
candidates. In the Multi-criteria Delta Table, to identify refac-
toring candidates that are more likely to improve maintain-
ability, the concept of Pareto dominance [43] in multi-
objective optimization problems is used. Pareto dominance
is a binary relation between two solutions. Solution A is
said to dominate solution B if all components of A are at
least as good as those of B with at least one strictly better
component [21]. Meanwhile, solution A is non-dominated if
it is not dominated by any solution; then, solution A is the
Pareto optimal and the set of Pareto optimal solutions is the
Pareto front or Pareto set.

From this concept, we can derive the dominance relation
between two refactoring candidates rcx and rcy as follows.
Refactoring candidate rcx is considered better than refactor-
ing candidate rcy, when at least one element of the Delta
Table for refactoring candidate rcx is smaller than that for
refactoring candidate rcy, and rcx is smaller than or equal to
rcy in elements of all other Delta Tables. Note that refactor-
ing candidates with smaller values in Delta Tables are
regarded to improve maintainability more; thus, the objec-
tives are converged to minimize the values in each Delta
Table. It is said that rcx dominates rcy, and this dominance
relation is denoted as the partial order rcx � rcy.

Pareto dominance relation of two refactoring candidates
can be summarized and formalized as follows. Refactoring
candidate rcx dominates refactoring candidate rcy, rcx �
rcy, if and only if there is m s.t. DmðrcxÞ<DmðrcyÞ and
DnðrcxÞ �DnðrcyÞ for all n 2 {1; . . . ; N}, whereN is the num-
ber of the Delta Table matrices. In short, rcx is at least as
good as rcy for all Delta Table values and it is better than rcy
for at least one Delta Table value.

Fig. 6. A procedure for identifying possible refactoring candidates and ranking them in the Multi-criteria Delta Table.
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2. Partitioning into the ordered groups of refactoring candi-
dates based on Pareto dominance relations. The Pareto domi-
nance relation is a partial order; thus, the refactoring
candidates are partitioned into several ordered groups.

Fig. 7 presents an illustrative example of the distribution
of refactoring candidates in the Pareto concept of the multi-
objective optimization problem. The first-tier group can be
regarded as the Pareto front. Thus, to find the best solution,
one of the Pareto optimal solutions from the Pareto front
can be chosen according to user preferences in the various
types of Delta Tables.

However, finding the best solution is not the main con-
cern in our approach. We investigate the partitioned groups
in an order of highly ranked tiers to identify the refactoring
candidates that are more likely to have better values in fit-
ness functions and improve maintainability. Thus, we need
to quantify each refactoring candidate belonging to the
same tier group to rank these refactoring candidates. The
distribution of the candidates for each group forms the con-
vex curve; thus, the euclidean distance [44] is used to obtain
the approximate values of the candidates.

3. Assigning approximate values based on euclidean distances
for non-comparable refactoring candidates. To calculate the
euclidean distance, values of the Delta Table should be
adjusted. First, components laid for each dimension of
the objective should be normalized. Thus, each value of the
Delta Table contained in the same group is normalized as
ðDðrcÞ �minÞ=ðmax�minÞ; where min and max indicate
the minimum and maximum Delta Table values in the
group, respectively. Second, positive values in Delta Tables
are replaced by zero. Only the negative values in each Delta
Table are considered to disregard the effects of the Delta
Tables that do not improve maintainability.

The euclidean distance for refactoring candidate rci is
calculated as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1ðrciÞÞ2 þ � � � þ ðDNðrciÞÞ2

q
; where DðrciÞ � 0:

To this end, the refactoring candidate with the greater value
in the euclidean distance is highly ranked in the Multi-
criteria Delta Table.

We briefly provide an illustrative example for ranking the
refactoring candidates in theMulti-criteria Delta Table.When
two Pareto dominance relations are identified, for example,
rcx � rcy and rcx � rcz, two partitioned, ordered groups are
established as follows: the first tier as (rcx) and the second tier

as (rcy, rcz). Since the refactoring candidates of rcy and rcz
belong to the same group and are not comparable, euclidean
distance values are assigned to each candidate to rank them.
If rcy is determined to have a greater euclidean distance value
than rcz, then the final rank order is rcx, rcy, and rcz.

4.2 Phase II: Evaluating the Chosen Refactoring
Candidates Using a Fitness Function

Real assessments for the refactoring candidates chosen by
the Delta Table are performed using a fitness function.
There are many kinds of metrics or functions for evaluating
maintainability; these can be used as fitness functions for
guiding the search for refactorings.

It is important to explain the fitness functions used in the
experiment. In general, lower coupling and higher cohesion
are most representative properties for measuring maintain-
ability. We chose Connectivity [14] and MPC [13] for the
cohesion and coupling metrics, respectively, because they
are used as evaluation measures in other Move Method
identification studies [10], [37]. Coarse-grained metrics,
such as Coupling Between Objects (CBO) [45] and Coupling
Factor (CF) [46], are not appropriate as fitness functions in
our approach, as their values do not change when a Move
Method refactoring is applied.

To investigate the effect of a measure taking into account
both cohesion and coupling aspects, the EPM [10] is used.
The EPM captures both cohesion and coupling into a single
formula. For a given class, the numerator represents the dis-
tances of the entities belonging to a class from the class itself
(i.e., the cohesion of a class), while the denominator repre-
sents the distances of the entities not belonging to a class
from this class (i.e., coupling of this class to the rest of the
system). Since the QMOOD [47] is ambiguous in some cases
[48] and the weights of the model are not fixed, we exclude
the QMOOD.

Multi-objective functions each of which uses two objec-
tives (e.g., MPC versus Connectivity, EPM versus MPC, or
EPM versus Connectivity) are also used. The bi-objective
function helps to identify refactorings that best compromise
each objective (e.g., MPC, Connectivity, or EPM).

We provide a more detailed explanation of how to calcu-
late each fitness function below.

Entity Placement Metric. EPM [10] measures how many
entities have correctly been placed and uses distances
instead of similarities in its computation. Entities with
smaller distances from a target class should be moved and
placed together to improve maintainability. Therefore, a
candidate with a lower EPM metric is considered a promis-
ing candidate.

EPM for a class C is given by

EPMC ¼

P
ei2C distanceðei;CÞ
jentities2CjP

ej 62C distanceðej;CÞ
jentities 62Cj

;

where e denotes an entity (e.g., method or field) of the sys-
tem. The similarity between an entity e and a class C can be
calculated as the cardinality of intersection over union for
the two entity sets of entity e and class C. The distance (e,
C) is obtained by subtracting the similarity value from 1.

Fig. 7. Distribution of refactoring candidates in the Pareto concept for the
multi-objective optimization problem. This example shows bi-objectives.
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To obtain a system-level metric, EPM for each class is
weighted by the ratio of the number of entities in the class
(jEC j) to the number of entities in the system (jESj), and all
weighted EPMs for all classes in the system (jCSj) are added
as follows:

EPMSystem ¼
XjCS j

i¼1

jECi
j

jESj EPMCi
:

Message Passing Coupling. MPC [13] for a class C is
defined as the number of invocations of methods not imple-
mented in class C but by the methods of class C. The MPC
evaluates coupling by employing the total number of
method invocations, while the other metrics (e.g., Request
for a Class (RFC) [49]) measure the number of distinct meth-
ods invoked. MPC for a class C is given by

MPCC ¼ jmeC j;

wheremeC denotes the calls from the class C to the methods
defined in external classes. To obtain a system-level metric,
we use the average MPC for a class.

Connectivity. Connectivity [14] for a class C is defined as
the number of the common method pairs (let it be cmp in
which one method invokes the other method or both access
a common attribute of the class) over the total number of
method pairs of the class. It is different from the other cohe-
sion metrics because it considers two methods, m1 and m2,
to be cohesive both when they access a common attribute
and when m1 invokes m2 or vice versa. Connectivity for a
class C is given by

ConnectivityC ¼ jcmpC j
jMC j!

2ðjMC j�2Þ!
;

where cmpC and MC denote the sets of common method

pairs and methods in class C, respectively, while jMC j!
2ðjMC j�2Þ!

represents the possible number of method pairs in the class.

To obtain a system-level metric, we use the average

Connectivity for a class.
It is important to note that the direction of convergence,

wherein refactoring candidates are considered to improve
maintainability, depends on the fitness function. In the fit-
ness functions above, refactoring candidates are suggested
to have smaller values in MPC and EPM and larger values
in Connectivity; thus, the directions of convergence are
negative (�) for MPC and EPM and positive (þ) for
Connectivity. In other words, refactoring candidates that
are evaluated as having values in those convergence direc-
tions are regarded as having positive effects on improving
maintainability.

5 EVALUATION

We designed our evaluations to address the following
research questions:

RQ1 Is the two-phase assessment approach efficient?
In other words, does the method of reducing the
search space by choosing refactoring candidates
using the Multi-criteria Delta Table and examining
only those candidates based on a fitness function
yield a good solution in less time?

RQ2 What is the effect of the number of the chosen refac-
toring candidates (top k%)?

RQ3 How well do the Delta Tables correctly identify
refactoring candidates that have actual higher (bet-
ter) fitness function values?

To consider projects with various characteristics, we have
chosen the following three open source projects: Apache
Ant [23], JGit [24], and JHotDraw [25]. They have been
widely used as experimental subjects in other literature.
Table 1 summarizes the characteristics of each project.
JHotDraw and Apache Ant are both stand-alone pro-
grams; JHotDraw is a GUI program, while Apache Ant is
a non-GUI program. JGit is a Java library implementing
the Git version control system. These projects are written in
Java and contain a relatively large number of classes.

Multiple runs of the refactoring identification process
using the two-phase assessment (i.e., 3 projects � 6 fitness
functions � 5 varied size of the Multi-criteria Delta Table ¼
90 times in total) are performed in an automated manner.
Refactoring candidates for which one or more of each Delta
Table has negative values constitute the Multi-criteria Delta
Table; thus, the total number of these candidates determines
the size of the Multi-criteria Delta Table. In addition to
considering all possible refactoring candidates, we per-
formed the approaches for selecting various number of
the candidates to the top k% (e.g., 5, 10, 20, 50 percent) of
the Multi-criteria Delta Table and evaluating them by each
fitness function, including MPC, Connectivity, EPM, and
the multi-objective functions for two objectives (e.g., MPC
versus Connectivity, EPM versus MPC, and EPM versus
Connectivity). The maximum number of iterations for the
refactoring process is set to 100 in this experiment.

5.1 RQ1. Efficiency of the Computation of the
Two-Phase Assessment Approach

Experimental Design. To investigate the efficiency of the com-
putation of the proposed two-phase assessment approach,
we measured the total elapsed time for performing the
entire process. The obvious measure denoting the efficiency
of the computation is time. In addition to time, the accumu-
lated number of assessed refactoring candidates, which is
proportional to time, is collected. Regarding the efficiency

TABLE 1
Characteristics of Each Subject

Project Description LOC ]Classes ]Entities (]Methods + ]Fields) ]Methods ]Fields

Apache Ant 1.9.6 Java application build tool 222,256 1,186 16,268 10,546 5,722
JGit 4.1.0 Distributed source version control system 166,415 946 11,686 7,543 4,143
JHotDraw 7.0.6 Java GUI framework 135,233 751 10,313 7,314 2,999
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indicator, amore efficient approach takes less time to achieve
the same amount of maintainability improvement, or from
another perspective, it contributes greater maintainability
improvement in same time duration.

The elapsed time for each iteration includes calculating
the Delta Tables, checking preconditions, ranking refactor-
ing candidates in the Multi-criteria Delta Table, and calcu-
lating fitness functions on the refactored designs that are
the trials (simulations) of the application of refactoring can-
didates. The experiment is performed under the following
conditions: processor 2.7 GhHz Intel Core i5, memory 32 G
1333 MHz DDR3, and operating system OS X 10.10.5.

For a comparative study, we perform the refactoring iden-
tification process without restricting the candidates. In short,
in this approach, all possible Move Method refactoring can-
didates that have passed the preconditions are assessed
through fitness functions; this approach is referred to as the
“no-reduction” approach.

Results for Time Saving. Table 2 gives an overview of the
results total time, speed up, the number of assessed refactor-
ing candidates, and final accomplishments of the fitness
functions. To capture subtle changes, the values of the fit-
ness functions are represented in four-digits decimal
numbers because a Move Method refactoring is an elemen-
tary-level move and it does not change the values of fitness
functions in great amounts. In this table, the two-phase
assessment approach restricting refactoring candidates to
the top 20 percent in the Multi-criteria Delta Table, which
we call “Delta top 20 percent,” is shown as representative
of our approach because this restriction size is sufficient to
find candidates as much as the no-reduction approach.
Three types of fitness functions (e.g., MPC, Connectivity,

and EPM) and the three types of multi-objective functions
for two objectives (metrics) from those fitness functions
(e.g., MPC versus Connectivity, EPM versus MPC, and
EPM versus Connectivity) are used for three projects (e.g.,
Apache Ant, JGit, and JHotDraw); thus, 18 cases are
compared to our approach and the no-reduction approach.
It should be noted that to improve maintainability, fitness
functions should be increased or decreased as MPC (�),
Connectivity (þ), and EPM (�).

The results in Table 2 show that by using our approach,
we are able to save a considerable time while achieving the
same amount of fitness improvement as the no-reduction
approach. For instance, our approach is 2.6 (min) to 13.5
(max) times faster than the no-reduction approach is. This
speed up is calculated by the time of no-reduction approach
over the time of our approach. Note that when calculating
the speed up, the time for accomplishing the same amount
of fitness improvement needs to be compared for a fair anal-
ysis. Thus, when final achievement of Delta top 20 percent
approach is less than that of the no-reduction approach, the
former approach is set to the baseline and the time to
accomplish this baseline is compared.

When excluding cases using the multi-objective fitness
function, seven out of nine cases can achieve the same
amount of improvement as the no-reduction approach by
only assessing refactoring candidates ranked to the top 20
percent in the Multi-criteria Delta Table. These correspond-
ing seven cases of Delta top 20 percent approach are
denoted by y in Table 2. When assessing the candidates of
the top 50 percent, we could achieve the same final fitness
values as the no-reduction approach for all cases (see
Fig. 10). The effects of the restriction size of refactoring

TABLE 2
Overview of the Results: Total Time, Speed Up, the Number of Assessed Refactoring Candidates,

and Final Accomplishments of the Fitness Functions After 100 Iterations

Project Approach Computational Cost Achievement in Fitness Function

Fitness Function Reduction Total Time (sec) Speed Up Total Candidate (#) Final Value [D amounts]

Apache Ant

MPC
Delta top 20% 321.52 5.2 17,500 13.9098 [�0.4359]
No-reduction 1,660.08 194,761 13.9089 [�0.4368]

Connectivity
Delta top 20%y 1,108.03 13.5 17,500 0.312 [þ0.0174]
No-reduction 14,930.60 194,854 0.312 [þ0.0174]

EPM
Delta top 20%y 1,628.22 9.8 17,500 0.9031 [�0.0013]
No-reduction 15,954.59 195,430 0.9031 [�0.0013]

JGit

MPC
Delta top 20% 249.39 5.7 20,200 13.2801 [�0.4525]
No-reduction 1,421.43 233,554 13.2780 [�0.4546]

Connectivity
Delta top 20%y 535.71 8.7 20,200 0.3666 [þ0.0382]
No-reduction 4,671.66 235,286 0.3666 [þ0.0382]

EPM
Delta top 20%y 1,076.57 10.3 20,200 0.896 [�0.0031]
No-reduction 11,077.33 236,005 0.896 [�0.0031]

JHotDraw

MPC
Delta top 20%y 137.35 2.6 5,400 16.9055 [�0.2569]
No-reduction 354.80 54,162 16.9055 [�0.2569]

Connectivity
Delta top 20%y 295.17 6.3 5,400 0.2901 [þ0.0189]
No-reduction 1,864.17 53,778 0.2901 [þ0.0189]

EPM
Delta top 20%y 221.32 7.2 4,266 0.9204 [�0.0005]
No-reduction 1,603.48 47,153 0.9204 [�0.0005]

� For improving maintainability, fitness functions should be increased or decreased: MPC (�), Connectivity (þ), and EPM (�).
� Speed Up x means that time of Delta top 20 percent approach (our approach) is x times as fast as time of no-reduction approach, and it is calculated as follows:
Speed Up ¼ time for no-reduction=time for Delta top 20 percent.
� y is appended to the cases of Delta top 20 percent approach that can achieve the same amount of improvement as the no-reduction.
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candidates in the Multi-criteria Delta Table with the effi-
ciency of computation and final achievement in fitness func-
tions are discussed in detail in Section 5.2.

Multi-Objective Fitness Function. Table 3 represents the
results of the two-phase assessment approach when using
the multi-objective functions (e.g., MPC versus Connectiv-
ity, EPM versus MPC, and EPM versus Connectivity) as a
fitness function. When comparing the final values of each
objective between our approach and the no-reduction
approach and considering the two objectives to have the
same relative importance, in four out of nine cases, neither
approach could be identified as superior, because no solu-
tion (at final achievement) dominated both objectives. For
example, for the multi-objective function of MPC and Con-
nectivity, in Apache Ant, the no-reduction approach has a
better MPC final fitness value, while our approach has a bet-
ter Connectivity final fitness value. Likewise, in JGit and
JHotDraw, our approach has better MPC final fitness val-
ues, while the no-reduction approach has better Connectiv-
ity final fitness values, respectively.

Nonetheless, we could still observe that the time taken in
our approach is greatly reduced compared to the time
required by the no-reduction approach to accomplish the
same solutions. The graphs in Fig. 8 show the results of
selected refactorings from the two approaches (Delta top 20
percent versus no-reduction) using the multi-objective func-
tions as fitness functions. Note that each refactoring is ran-
domly selected from the Pareto front at each iteration of the
identification process, as explained in Section 3.1. Each axis
represents one objective (e.g., MPC, Connectivity, or EPM),
and the time and the speed up measure are annotated to the
points where the two approaches arrive at the same solutions
(reaching equal values for both objectives). From these points

of the solutions, our approach is 6.7 (min) to 13.2 (max) times
faster than the no-reduction approach. For this reason, when
using the multi-objective fitness functions, we conclude that
our approach can also be efficiently computed.

Computational Cost for Each Iteration. Table 4 shows the
computational cost of the number of assessed candidates
and the time for each iteration; the number of assessed can-
didates and the time required for performing our approach
are less than those of the no-reduction approach. The time
difference for each iteration is small; thus, it may be seen
manageable in a small-scale system or when the load for
computing fitness functions is low. However, as the system
becomes larger and the fitness functions become more com-
plex, the accumulated time differences will be increased dras-
tically. It should be noted that the time it takes to calculate
the Delta Table is extremely low [max: 1.54 (sec), min: 0.67
(sec)], and this is affordable. This overhead enables improve-
ment of the efficiency of our approach by restricting
the number of candidates to be assessed using the fitness
functions and then achieving the same amount of fitness
improvement as the no-reduction approach.

Our approach is efficient in that it saves a considerable
amount of time while still achieving the same amount of
fitness improvement as the no-reduction approach. Our
approach is 2.6 (min) to 13.5 (max) times faster than the no-
reduction approach.

We observed significant results on time savings related
to the system size and fitness function complexity. Fig. 9
shows the graphs for the time savings of each subject. The
X-axis is the percent of achievement on fitness functions,
while the Y-axis is time saving. This time saving denotes the
absolute difference of time between the Delta top 20 percent

TABLE 3
Overview of the Results When UsingMulti-Objective Fitness Functions

Project Approach Computational Cost Achievement in Fitness Function

Multi-objective Fitness Function Reduction Total Time Speed Up Total Candidate Final Value

(Objective 1, Objective 2) (sec) (#) [D amounts]

Apache Ant

(MPC, Connectivity)
Delta top 20% 1,235.46

n/a
17,500 (14.0396 [�0.3061], 0.3081z [þ0.0135])

No-reduction 16,424.57 194,512 (14.0245z [�0.3212], 0.3072 [þ0.0126])

(EPM, MPC)
Delta top 20% 1,789.74

9.6
17,500 (0.9035 [�0.0009], 14.0531 [�0.2926])

No-reduction 17,225.71 195,376 (0.9035 [�0.0009], 14.0531 [�0.2926])
(EPM, Connectivity)

Delta top 20% 2,613.81
10.5

17,500 (0.9033 [�0.0011], 0.3097 [þ0.0151])
No-reduction 27,521.06 195,410 (0.9033 [�0.0011], 0.3097 [þ0.0151])

JGit

(MPC, Connectivity)
Delta top 20% 672.32

n/a
20,200 (13.4123z [�0.3203], 0.3567 [þ0.0283])

No-reduction 5,920.03 234,242 (13.4175 [�0.3151], 0.3575z [þ0.0291])
(EPM, MPC) Delta top 20% 1,272.89

9.8
20,200 (0.8969 [�0.0022], 13.4398 [�0.2928])

No-reduction 12,429.60 235,115 (0.8969 [�0.0022], 13.4398 [�0.2928])
(EPM, Connectivity) Delta top 20% 1,568.10

11
20,200 (0.8964 [�0.0027], 0.3641 [þ0.0357])

No-reduction 17,223.65 236,216 (0.8964 [�0.0027], 0.3641 [þ0.0357])

JHotDraw

(MPC, Connectivity)
Delta top 20% 328.10

n/a
5,400 (16.9387z [�0.2237], 0.2846 [þ0.0134])

No-reduction 2,150.99 54,091 (16.9547 [�0.2077], 0.2860z [þ0.0148])
(EPM, MPC)

D‘elta top 20% 270.08
n/a

4,320 (0.9203z [�0.0006], 16.9947 [�0.1678])
No-reduction 2,232.21 54,494 (0.9205 [�0.0004], 16.9760z [�0.1864])

(EPM, Connectivity)
Delta top 20% 463.71

8.2
4,914 (0.9203 [�0.0006], 0.2831 [þ0.0119])

No-reduction 3,802.73 54,303 (0.9203 [�0.0006], 0.2831 [þ0.0119])

� z is appended to the final fitness value which is greater than the one of the opponent’s approach for each objective; Speed Up cannot be calculated (denoted as n/a)
when neither approach could be identified as superior because no solution dominated both objectives; nonetheless, we could still observe that the time taken in our
approach is greatly reduced (see Fig. 8).
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and the no-reduction approaches. The baseline of the total
achievement on fitness functions is set to min{Delta top
20%, no-reduction}, which is the same method used when
calculating the speed up in Table 2. The time saving for
every iteration is accumulated, and the time savings are
represented as the refactoring identification process pro-
ceeds. The results of the graphs in Fig. 9 can be summa-
rized below.

Result of the Effect of System Size. The efficiency of the
computation increases as the size becomes larger. The sys-
tem size relates to the number of classes and the number of
entities (methods and fields) in the system. The size of the
subjects is larger in the following order: Apache Ant, JGit,
and JHotDraw (see Table 1). The elapsed time for perform-
ing the entire process using each fitness function increased
according to this order. The time savings for all used fitness

functions in Apache Ant are much larger than the time sav-
ings in JHotDraw.

Result of the Effect of the Fitness Function Complexity. In
each subject, we observe that the efficiency of the computa-
tion is increased as a used fitness function becomes more
complex. For instance, MPC is a rather simple fitness func-
tion, while EPM and Connectivity fitness functions are com-
plex fitness functions. In each subject, the time savings for
EPM and Connectivity fitness functions are much larger
than the time savings for MPC.

The complexity of fitness functions denotes aspects of
both design and computation. Design complexity indicates
that many types of metrics constitute a fitness function (e.g.,
the weighted sum of several metrics) or a multi-objective
fitness function. Computation complexity signifies that the
computational load of fitness functions is high. For instance,

Fig. 8. Graphs of the multi-objective fitness functions (for instance, bi-objectives); Each objective at each axis; The time and the speed up (time for
no-reduction=time for Delta top 20 percent) are annotated, where the two approaches (Delta top 20 percent versus no-reduction) arrive at the same
solutions for three subjects.

1014 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018



to obtain a system-level metric, metrics for all classes exist-
ing in a system may need to be calculated. If a metric for
each class requires an examination of all relations surround-
ing that class, it is hard to reuse the caching objects, which
increases the computational overhead.

In this context, loads of the computation in EPM and
Connectivity are comparably high. As shown in the formu-
lation of fitness functions in Section 4.2, the EPM investi-
gates the relations to the entities in a class and the entities
outside the class for every entity in a system; the aim of this
is to consider cohesion and coupling aspects. In Connectiv-
ity, the number of entities in each class is important, as the
metric considers all possible method pairs to investigate
their relations if they have method calls or shared fields.
Thus, for both EPM and Connectivity, the computation time
is increased linearly to the number of classes or entities in a
system. However, for Connectivity, the computation time is
increased exponentially to the number methods in a class, as
Connectivity examines all possible pairs of methods in a
class, and therefore the number of entities for each class is
critical in determining the computational cost. Contrary to
the metrics, MPC is not essentially affected by the size of
the system; it simply counts the number the method invoca-
tions. In summary, the computational cost, such as the

amount of calculation of fitness functions for the application
of refactoring candidates, is directly affected by the com-
plexity of the fitness functions used and the system size of
the next elements: the number of classes or entities in a sys-
tem and the number of entities in a class (inner entities).
The number of entities in a system is proportional to the
number of entities outside a class (outer entities).

From the results using multi-objective fitness functions,
we could find the evidence that our two-phase assess-
ment approach becomes more efficient when more com-
plex fitness functions are used. For instance, the time
savings between two approaches, no-reduction approach
and our approach, when using two objectives for a fitness
function (in Table 3) are much larger than the ones com-
pared to the cases using the single objective (in Table 2).
In addition, the more complex each objective in a multi-
objective fitness function, the more time it takes to per-
form the entire refactoring process; thus, it is more effi-
cient to use the two-phase assessment. For example, in
Apache Ant, the time savings are 24,907 (sec) and 15,436
(sec) for the cases of EPM versus Connectivity and EPM
versus MPC, respectively. In those multi-objective func-
tions, EPM is commonly used, and the other objectives
are MPC and Connectivity, respectively; Connectivity is a
more complex fitness function than MPC, which produces
the difference in the greater amount of time savings.
Thus, we conclude that our approach is more efficient
when the more complex fitness function is used.

The amount of time savings is increased as the size
becomes larger and as more complex fitness functions are
used. The elapsed time for performing the entire process
using each fitness function is increased in the following
order: Apache Ant, JGit, and JHotDraw, which indi-
cates a larger system size order. Furthermore, more time
is required in EPM and Connectivity than MPC, which
conforms to the order of higher computational loads of
fitness functions.

5.2 RQ2. Restriction Size Effect: Multi-Criteria Delta
Table with Top k

To investigate the effect of restricting the size of refactoring
candidates in the Multi-criteria Delta Table on computa-
tional efficiency, we compared the achievements of fitness
functions (e.g., Connectivity, MPC, and EPM) over time for
the various sizes (e.g., top k% [5%, 10%, 20%, 50%] of the
Multi-criteria Delta Table).

TABLE 4
Computational Cost for Each Iteration

Reduction Cost Per Iteration Apache JGit JHotDraw

No-reduction

Candidate (#) 1,954 2,360 548

Time (sec)
MPC 16.60 14.21 3.55

Connectivity 149.31 46.72 18.64
EPM 159.55 110.77 18.65

Delta top 20%

Candidate (#) 175 202 54

Time (sec)

MPC 3.22 2.49 1.37
‘ Delta Table 1.52 0.98 0.67	

‘ Others 1.70 1.51 0.70
Connectivity 11.08 5.36 2.95
‘ Delta Table 1.54		 0.99 0.67	

‘ Others 9.54 4.37 2.28
EPM 16.28 10.77 2.80

‘ Delta Table 1.53 0.97 0.67	

‘ Others 14.75 9.8 2.13

� Candidate (#): Average number of assessed refactoring candidates for each
iteration.
� Time for Delta Table (sec): Average time for calculating the Multi-criteria
Delta Table for each iteration; annotated for min time and max time with 	
and 		.
� Time for Others (sec): Average time required for other than the Multi-criteria
Delta Table (mostly for calculating each fitness function) for each iteration.

Fig. 9. Time savings for each subject: The X-axis is the percent of achievement on fitness functions (i.e., maintainability improvement), while the
Y-axis is time saving.
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Fig. 10 represents the graphs showing the effects of the
size of refactoring candidates in the Multi-criteria Delta
Table on efficiency, measured by the achievements of fitness
functions over time. The trends of these graphs apparently
show that as the restriction size of candidates in the Multi-
criteria Delta Table becomes smaller, the maintainability
tends to improve more rapidly with respect to time because
a smaller number of candidates is assessed using each fit-
ness function. For instance, when restricting refactoring can-
didates from all to the top 20 percent in the Multi-criteria
Delta Table, the time it took is at least 1.7 and up to 6.3 times
faster to accomplish the same results for the final achieve-
ment in the fitness functions.

As the restriction size of candidates in the Multi-crite-
ria Delta Table becomes smaller, the maintainability
tends to improve more rapidly with respect to time. The
time it takes to assess the top 20 percent candidates in
the Multi-criteria Delta Table is up to 6.3 times faster
than assessing all candidates.

The size in the Multi-criteria Delta Table affects the effi-
ciency of computation and final maintainability achieve-
ment. If the Delta Table is extremely small (e.g., Delta Table
top k � 5%), the maintainability improvement achieved
could be too small or the process may be terminated early;
thus, it may not achieve sufficient improvement compared
to the intended goal for fitness functions. In contrast, when
the restriction size is larger and more candidates are chosen
in the Multi-criteria Delta Table, the chance of a better final
achievement relating to fitness functions is increased; how-
ever, the efficiency tends to be lower because much more
time is required to assess the candidates. Thus, the main-
tainability of the fitness functions does not improve relative
to time invested.

For this reason, it is important to determine the proper
size in the Multi-criteria Delta Table by considering both the
efficiency and the final achievement. Determining the size
of the Multi-criteria Delta Table is worthwhile and critical,
especially in situations when time or computing resources
are limited.

Fig. 10. Effect of restriction size of refactoring candidates in the Multi-criteria Delta Table (top k% [5%, 10%, 20%, 50%]) on efficiency: Achievements
of fitness functions (Y-axis) over time (X-axis).
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A too-small size will cause early process termination;
thus, it is important to determine the proper size.

It is important to note that time and number of iterations
can be a trade-off for the achievements of fitness functions;
thus, when the restriction size of refactoring candidates is
reduced, they trade less time for the larger number of itera-
tions. However, the achievement of fitness functions with a
smaller number of iterations can sometimes be highly pre-
ferred, even if they require more time. Developers may
want a smaller number of iterations because they do not
want to perform the iterative process again and again. If
they attempt to perform the refactoring identification pro-
cess only until the goal of the fitness improvement is
achieved, they would prefer to apply a few refactoring
steps. Furthermore, the number of iterations relates to the
application cost; thus, a smaller number of refactoring

applications can be more valued. The number of iterations
denotes the number of applied refactorings because a refac-
toring is selected and applied for each iteration of the pro-
cess. Basically, if we can ensure that applying a refactoring
on actual source codes is fully automated by a tool, then the
refactoring cost can be regarded as zero; however, in prac-
tice, the application of refactorings may involve additional
application costs, such as the effort of relocating codes,
especially when the refactorings are complex [50].

Fig. 11 represents the graphs that show the effects of the
size in the Multi-criteria Delta Table for the improvement of
fitness functions for each of the selected refactoring applica-
tion. The number of applied refactorings is denoted by the
number of iterations. ForMPC, a simplemetric, the improve-
ments of fitness functions over 100 applied refactorings (i.e.,
100 iterations) are identical for all various size in the Multi-
criteria Delta Table. In this case, the smallest size of the table

Fig. 11. Effect of restriction size of refactoring candidates in the Multi-criteria Delta Table (top k% [5%, 10%, 20%, 50%]) on efficiency: Achievements
of fitness functions (Y-axis) over the number of iterations (X-axis).

HAN AND CHA: TWO-PHASE ASSESSMENT APPROACH TO IMPROVE THE EFFICIENCY OF REFACTORING IDENTIFICATION 1017



is the best choice for time efficiency. In contrast, for Connec-
tivity and EPM, which have higher computation complexity,
as the restriction size of the Multi-criteria Delta Table
becomes larger, the amounts of improvement on fitness func-
tions tends to become higher in accordance with the number
of iterations. Finally, when assessing the top 50 percent of
refactoring candidates, the rate of the improvement with
respect to the number of iterations becomes similar to that in
the no-reduction approach. Thus, the size does not necessar-
ily need to be increased above this. For approaches using fit-
ness functions of Connectivity and EPM, if a higher rate of
the improvement on fitness functions over the iterations is
preferred over a smaller amount of time (i.e., even if the
required time will increase), then the larger size of the Multi-
criteria Delta Table should be used. In our approach, we put
greater emphasis on using less time.

Less iterations and more required time can be a trade-
off, and developers can choose which criterion should be
more highly valued according to their preference.

5.3 RQ3. Restriction Performance: Multi-Criteria
Delta Table as a Filter

To test the performance of the Multi-criteria Delta Table as a
filter for the restriction, we investigated its ability to identify
refactoring candidates that actually have higher (better) fit-
ness function values; these represent the real assessment
methods for evaluating refactored designs on maintainabil-
ity. For this, for each iteration of the refactoring identification
process, refactoring candidates with negative values on at
least one of Delta Tables, which are expected to have the
possibilities to improve maintainability, are compared
against all possible candidates with positive effects, which
are regarded to improve maintainability. The comparison of
the possible candidates is obtained after completing the pre-
condition verification.

Two criteria are measured: precision and recall. Let the set
of refactoring candidates in the Multi-criteria Delta Table be
D and the set of refactoring candidates with positive effects
on each fitness function among all the possible candidates be
E. Then, the precision and the recall can be defined as follows:

Precision ¼ jD \Ej=jDj; Recall ¼ jD \Ej=jEj:
The precision indicates the number of the candidates com-
monly identified from two set over the number of the ones
identified by the Multi-criteria Delta Table. The recall repre-
sents the number of commonly identified candidates over
the whole set. A higher recall means that the Multi-criteria
Delta Table can find more refactoring candidates that actu-
ally improve fitness; this means that the Multi-criteria Delta
Table plays the role properly in limiting the search space of
refactor candidates and increasing the efficiency. The value
of 1 in the recall means that the refactoring candidates
found by the Multi-criteria Delta Table include all candi-
dates with positive effects on a fitness function.

Table 5 shows the results of the precision and the recall
for all fitness functions of three subjects. The results are
shown in the min, max, and mean values that are obtained
for every iteration of the refactoring identification process.
The values of the precision are in the range of 0.21 to 0.52.
The reason for the low precision is that we used the same
types of Delta Tables for all fitness functions. In contrast,
the values of the recall are in the range of 0.74 to 1. In partic-
ular, for MPC, the values of the recall are 1 for all subjects,
which indicates that the Multi-criteria Delta Table perfectly
identified all refactoring candidates that improved MPC.
The MPC is the number of invocations by the methods in a
class, which is similar to the elements of the Delta Table that
considers the dependency relation where one method calls
another method. The Multi-criteria Delta Table also pro-
duced good results of the recall for other fitness functions,
such as Connectivity and EPM. For instance, the min values
of the recall in Connectivity and EPM are both 0.74; this
value represents that more than 74 percent of candidates
that have positive effects on Connectivity and EPM can be
identified by the Multi-criteria Delta Table.

In the experiment, we used the generic type of the Multi-
criteria Delta Table, which results in the low precision. For
comparison purposes, the same types of Delta Tables are
used for all fitness functions, thus many false-positive refac-
toring candidates may have been retrieved. In practical use,
Delta Tables can be customized to fit into each fitness func-
tion, thereby reflecting the goal of the refactorings; then, the
precision can be increased. Nevertheless, through the results
of the recall, we could observe that the Multi-criteria Delta
Table is able to find the refactoring candidates that actually
improve fitness with a high probability, which is enough to
show the prediction capability of the Delta Tables.

The Multi-criteria Delta Table perfectly identified all
refactoring candidates that improved MPC. For Connec-
tivity and EPM, more than 74 percent of candidates that
have positive effects on each fitness function can be iden-
tified by the Multi-criteria Delta Table.

5.4 Threats to Validity

Scalarization for the Multi-Criteria Delta Table.We adapted the
Pareto concept and devised the Multi-criteria Delta Table,
which enables consideration of many types of relations. The
solutions of refactoring candidates belonging to the Pareto
fronts can be regarded as having the same priority. The can-
didates belonging to the same tier of the group are equally
ranked as well (see Fig. 7). Thus, the maintainer can choose

TABLE 5
Prediction Results

Subject Fitness Function Precision Recall

Min Max Mean Min Max Mean

Apache Ant

MPC 0.47 0.48 0.47 1 1 1
Connectivity 0.38 0.52 0.47 0.74 0.96 0.85

EPM 0.23 0.24 0.23 0.79 0.83 0.81

JGit

MPC 0.37 0.37 0.37 1 1 1
Connectivity 0.46 0.5 0.48 0.93 0.97 0.95

EPM 0.34 0.35 0.34 0.74 0.76 0.74

JHotDraw

MPC 0.47 0.5 0.48 1 1 1
Connectivity 0.4 0.43 0.42 0.97 0.99 0.99

EPM 0.21 0.24 0.23 0.89 0.94 0.91

� Recall 1 indicates that the Multi-criteria Delta Table predicts 100 percent of
all refactoring candidates that have positive effects on a fitness function.
� In the experiment, we used the generic type of the Multi-criteria Delta Table,
which results in the low precision. The precision can be higher when the Delta
Tables are customized to fit into each fitness function.
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a solution from this group depending on his or her preferen-
ces for various types of Delta Tables. To automate the process
and choosing the top k% of refactoring candidates based on
the Delta Tables, we needed to investigate the partitioned
groups in an order of highly ranked tiers. To rank the candi-
dates within the same group, we needed to quantify each
refactoring candidate. Thus, the euclidean distance [44] is
used to obtain the approximated values of those candidates.

Limiting the Maximum Number of Iterations. The maximum
number of iterations for the refactoring process is set to 100
in this experiment. The number of iterations is limited due
to computing constraints; however, the number is adequate
to observe the trends of the variations in fitness. Moreover,
it is impractical to apply over 100 refactorings because of
the application cost.

Time Savings on Connectivity. The approach using the
Connectivity metric greatly improved the efficiency of the
computation (compared to its computation complexity).
This can be explained as follows. First, JHotDraw and
Apache Ant tend to have a larger number of entities in
each class on average. In addition, the same Delta Tables
that are not designed for each fitness function are highly
correlated with the Connectivity metric.

Subject Variation. Our evaluation used only three subject
programs. To show the validity of the provided method,
more experiments need to be performed on various projects
(e.g., varying in size and project characteristics).

Comparison of Refactoring Candidates for Different Approaches.
To investigate the ability of the Delta Tables to identify
refactoring candidates that actually have better fitness
function values (for the RQ3), we needed to compare
the refactoring candidates produced from the two differ-
ent approaches, namely our approach and no-reduction
approach. Although the initial designs are identical in the
two approaches, applying different sequences of refactor-
ings resulted in different refactored designs; thus, the
refactoring opportunities cannot be compared directly. For
comparison purposes, in each iteration of the refactoring
identification process, we followed one of the comparison
approaches (i.e., the no-reduction approach) and identified
the refactoring candidates using our approach from the
same design. Then, these two set of identified refactoring
opportunities are compared.

Comparison Approach. In this paper, we do not directly
compare our method to those of other Move Method identi-
fication studies, such as Methodbook [37] and the EPM [10],
since their primary goal is to identify the refactoring candi-
dates by defining a fitness function that serves as a guide to
find good solutions (e.g., candidates that improve maintain-
ability). The main contribution of this paper is to improve
the computational efficiency via a two-phase assessment in
the refactoring identification process. The EPM is used as
one of the fitness functions in the second-phase assessment.

Validity of Comparison Criteria. When measuring elapsed
time, many factors may have an effect. We regard this as a
negligible issue because it causes small variation. Thus, we
used the elapsed time for the comparison.

5.5 Discussion

Multi-Objective Fitness Function. Using a multi-objective fit-
ness function does not mean that we use the multi-objective

search. In the experiment, various types of fitness functions
have been used to assess the impact of the application of refac-
toring candidates in terms of maintainability; and a multi-
objective function (e.g., MPC versus Connectivity) is used as
one of the fitness functions. The experimental conditions of
the various fitness functions are to show that the more com-
plex fitness functions are used, the more the two-phase
assessment approach increases computational efficiency.

It is worth to mention that we do not aim to provide the
solutions for the multi-objective optimization. To solve the
multi-objective optimization problem, the promising refac-
toring candidates of the search space (i.e., representative set
of Pareto optimal solutions) should be sampled by multiple
runs, and the trade-offs in satisfying the different objectives
should be analyzed or quantified. However, finding the opti-
mal refactoring sequences is not our main concerns. Our
approach accommodates the stepwise interactive search
(explained in Section 3.2). To this end, all the candidates in
the set of Pareto optimal (Pareto front) are considered equally
good, thus it is enough to provide them for each iteration of
the process.We believe that the searchingmethod, whether it
is themulti-objective or single-objective, does not really affect
the main contribution that the proposed method restricting
the candidates using the Delta Tables helps to improve the
efficiency of the refactoring identification process.

Random Selection for Restricting Refactoring Candidates. To
restrict refactoring candidates, random selection can be
used. However, the random selection is unstable, especially
when the number of selected refactoring candidates is so
small. This may generate different solutions for every execu-
tion and rely on finding a good solution by chance. More-
over, random selection seems to require no computational
cost, but searching all found refactoring candidates to elimi-
nate the redundant ones actually incurs high computational
costs. Nonetheless, random selection is useful to escape from
the local minimum. Thus, we also considered randomly
selected candidates when choosing the top k% ranked candi-
dates in theMulti-criteria Delta Table (see Section 3.1).

Importance of Using Techniques for Internal Implementation.
When developing the proposed methods into source codes,
the techniques and decisions are critical and have a great
impact on performance, however, this issue is rarely dis-
cussed in software engineering research. In the implementa-
tion, we applied new techniques, such as Eigen C++
libraries, for efficient matrix computation (see Section 2.2.3),
and this significantly improved the performance. Further-
more, since checking the numerous preconditions requires
heavy calculation, the preconditions are checked only once
when starting the refactoring process. The preconditions are
checked for all possible Move Method refactoring candi-
dates, and the mask matrix (row: entity, column: class) is
established. The element in the mask matrix becomes 1
when the corresponding refactoring candidate has passed
the preconditions successfully; otherwise, the element is set
to 0. By element-wise multiplication of the mask matrix
with the calculated Delta Tables, only the refactorings that
do not violate the conditions remain.

Extension to Other Types of Refactorings. Each element in
the Delta Tables has the values for the delta of maintainabil-
ity for moving methods or fields. As addressed in Section
2.2.2, the large-scale refactoring consists of elementary-level
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refactorings such as Move Method and Move Field refactor-
ings, thus the Delta Tables can be extended to assess other
types of refactorings (e.g., Extract Method or Extract Class
refactoring).

Suggestions of Refactoring Candidates to Active Open Source
Project. We applied the identified refactorings to the active
open source project, JGit. The most recent version is 4.7.1.
We performed our approach of refactoring identification
process automatically by choosing the refactorings that
improve the maintainability of a fitness function to the
greatest extent. Among the suggested refactorings, we
selected to submit two of the refactorings found when using
the fitness function of EPM: Move Method clean from
class WindowCache to class Entry and Move Method
clean from class DfsBlockCache to class HashEntry.
The class Entry and the class HashEntry are the inner
classes. The method clean tends to access the methods and
attributes in each inner class (i.e., Feature Envy design prob-
lems); thus, it is better to move the methods to those inner
classes where those methods are actually used.

Using the projects used in the experiments, however, it is
difficult to find many meaningful suggestions for the fol-
lowing reasons. First, the projects are mature. As the sys-
tems evolve, the subjects where the emphasis has been
placed on improving the design quality do not have as
many candidates to be refactored. It is hard to show the use-
fulness of the suggested approach using already well-
designed versions of software programs. Second, projects
with characteristics such as JGit may not require refactor-
ing opportunities in terms of design quality. JGit is the Git
version control system, including repository access routines,
network protocols, and core version control algorithms; and
it is the algorithm-intensive program, which is procedural,
not object-oriented. Therefore, some of the suggested refac-
torings are inadequate to apply because they can undermine
the intent of the original designer and reduce the efficiency
of the algorithm. Furthermore, in order to use many librar-
ies and frameworks, the program structure is intentionally
designed to reduce the maintainability. In these cases, the
suggested refactorings should not be applied.

6 RELATED WORK

To quantify the impact of a refactoring candidate, the refac-
toring should be applied either actually or virtually on
source codes or design models, and then the design quality
of maintainability can be measured on for both designs from
before and after applying a refactoring candidate. The differ-
ence can be used to exhibit the fitness of a refactoring candi-
date, and this can be employed to guide searching in an
automated refactoring identification approach. A larger dif-
ference in a positive direction denotes that the application of
the refactoring candidate improvesmaintainability more.

The most time-consuming part of the refactoring identifi-
cation process is assessing refactoring candidates. Assessing
the designs for all trials of the application of refactoring can-
didates may require high computational costs for calculating
the fitness functions. When the size of the software becomes
large and the more complex fitness functions are used, the
load for computing fitness functions can be extremely high.

To improve the computational efficiency, we used a
two-phase assessment approach by restricting refactoring

candidates using the Delta Tables. Each element in the Delta
Table denotes the effect of the application of refactoring can-
didates, and approximations of these effects can be calcu-
lated rapidly and at once by computing the values for the
delta of maintainability based on matrix computation.

We categorize and present the studies related to this
theme below.

6.1 Refactoring Candidate Assessment

The maintainability of software design can be measured
using several types of design quality metrics or maintain-
ability evaluation functions. These have been used as fitness
functions in other refactoring identification research pre-
sented below.

Simple Metrics. A single metric, such as a coupling metric
(e.g., MPC [13], RFC [45], CBO [45], and CF [46]) or cohesion
metric (e.g., Connectivity [14], Method Similarity Cohesion
(MSC) [51], and Lack of Cohesion in Methods (LCOM) [45]),
is often used [52], [53]. Such metrics are easy to calculate
but consider only one aspect of maintainability.

Multiple Objectives into a Single Optimization. To consider
multiple aspects simultaneously, multiple metrics are com-
bined using weights into a single objective fitness function,
and this type of fitness function is used in many refactoring
studies. Examples include weighted sum of OO metrics [30]
and QMOOD [5], [54]. While such a method is useful, prob-
lems may occur when weight coefficients are inappropri-
ately chosen or component metrics have dependencies
among them [15]. Several metrics (multiple objectives) must
be calculated for a fitness function; thus, as the system
becomes larger, the computational cost becomes more sub-
stantial as well.

Multi-Objective Optimization. A multi-objective optimiza-
tion is a process of finding a solution from a pool of candi-
date solutions in which several non-dominant solutions
involve different trade-offs. The set of all points in the objec-
tive space that are not dominated by any other points is
called the Pareto front, and Pareto optimization techniques,
such as NSGA-II and SPEA2, have been suggested [15], [16],
[17], [18], [20].

Harman and Tratt [15] first suggest using Pareto optimal-
ity combining the two metrics, namely CBO and Standard
Deviation of Methods Per Class (SDMPC), in search-based
refactoring. Multiple runs of their search-based refactoring
system lead to the production of a Pareto front, the values
of which represent the Pareto optimal sequence of refactor-
ings. Users can choose a value on the front that represents
the trade-off between metrics most appropriate to them.

Mkaouer et al. [17] used NSGA-II to find an optimal solu-
tion among three objectives, minimizing the number of code
smells and improving QMOOD quality metrics, minimizing
the size of the refactoring solutions, andmaximizing the pres-
ervation of the semantic coherence of the design.However, as
they admitted, it is difficult to determine the best solution
from a set of non-dominated solutions when adapting multi-
ple objectives to software engineering problems.

Our Method. In this paper, we used the same kinds of fit-
ness functions as explained above. The lightweight and
rapid delta assessment method, Delta Tables, is used to pre-
liminarily assess the effects of the application of refactoring
candidates to filter out the candidates that are unlikely or
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rarely improve maintainability. Each element in the Delta
Table denotes the value for the delta of maintainability, and
the elements can be calculated quickly and at once based on
matrix computation. It should be noted that other studies
utilizing the matrix for refactoring identification use the
matrix to store the values (e.g., the likelihood that two meth-
ods should be in the same class [55]). In contrast, in
our approach, the design of source codes is encoded into
matrices, and the matrix multiplication is used to directly
calculating the value for the delta of maintainability, an
approximate measure used for assessing each refactoring
candidate. It is worth to note that using a multi-objective fit-
ness function does not mean to use the multi-objective
search. Our approach accommodates the stepwise interac-
tive search, and the searching method is different from the
one adopted in the studies [15], [17].

6.2 Efficiency Improvement for the Refactoring
Identification Process

Automating the refactoring identification process has been
actively studied in search-based engineering research [56],
[57], [58]. However, few studies have focused on the effi-
ciency aspects of the refactoring identification process for
identifying refactorings that improve maintainability.

Search Space Reduction. Piveta et al. [59] used Determin-
istic Finite Automata (DFA) to represent refactoring sequen-
ces and a set of simplification rules to reduce the search
space. They tried to eliminate redundant and meaningless
sequences on the generated refactoring sequences by reduc-
ing the refactoring sequences to those that are semantically
sound while avoiding sequences leading to the same results.
To apply their technique, refactoring sequences must first
be generated which is usually a time-consuming process.
Our technique, however, provides a proactive and efficient
approach in that search-space reduction is achieved while
searching for refactoring candidates.

Approximation. There have been attempts to use approxi-
mate metrics to cheaply assess a fitness to guide a search-
based approach.

Harman et al. [60] addressed the need for new forms of
approximate metrics for adaptive search-based software
engineering problems. They claimed that those metrics can
act as surrogates for more computationally expensive meas-
urements and should retain some of the essence of the more
computationally expensive metric but sacrifice some degree
of precision for computational performance. The surrogate
can thus be used to cheaply assess an approximate fitness to
guide a search-based approach for dynamic adaptivity.

In [26], we used the preliminary version of the Delta Table
as a fitness function. We focused on the ability of the Delta
Table to rapidly calculating the effects of the application of
refactoring candidates, thereby helping to identify refactorings
faster than the approach of using complex fitness functions.

Our Method. In this paper, for the two-phase assessment
approach, we used the new version of the Delta Tables, the
Multi-criteria Delta Table, which provides ways to consider
several types of dependencies, as well as to adapt various
types of refactorings other than Move Method refactorings.
This serves to reduce the number of refactoring candidates
to be evaluated with a fitness function to increase the
computational efficiency.

7 CONCLUSION AND FUTURE WORK

To automating the refactoring identification process, an effi-
cient method for assessing the impact of the application of
the numerous refactoring candidates is essential. To improve
the efficiency of the process, we propose a two-phase assess-
ment approach to reduce search spaces of refactoring candi-
dates that are the subjects of evaluation using fitness
functions. Refactoring candidates are preliminarily assessed
using Delta Tables, and using the Multi-criteria Delta Table,
only the candidates that aremore likely to improvemaintain-
ability are chosen to be evaluated with a fitness function. A
refactoring is selected—either interactively by accepting a
developers feedback or automatically by choosing the refac-
toring that improves the maintainability of a fitness function
to the greatest extent—from each iteration of the refactoring
identification process and the refactorings are applied one
after another in a stepwise fashion. The Delta Table plays the
most important role in the two-phase assessment approach.
Using this method, the delta value of the maintainability
provided by each refactoring candidate can be quickly cal-
culated at once by mapping the software design to a matrix
and multiplying the matrices. Our approach is evaluated
using three large open-source projects. The experiments
revealed that our approach is significantly efficient because
it saves a considerable amount of time while achieving the
same amount of fitness improvement as the no-reduction
approach. These time savings increase as the size becomes
larger and more complex fitness functions are used. The
benefit of saving the computational cost outweighs the
overhead of computing the Delta Table.

For future work, we plan to take into account several
kinds dependencies and different factors, such as the change
history and textual information, for the Multi-criteria Delta
Table. We believe that this would improve the applicability
of our approach for practical use. Furthermore, we plan to
apply global search techniques (e.g., GA) to the automated
identification and perform comparative research with the
local search techniques in perspectives of maintainability
improvement, defect reduction, time taken, and so on. We
also have a plan to perform empirical studies on the effi-
ciency in search-based refactoring identification using sev-
eral approximate evaluation methods. Since the elements in
theDelta Tables are approximate but good enough to prelim-
inarily assess the impacts of the application of refactoring
candidates so that they can help significantly increase com-
puting efficiency in various domains.
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