
An efficient method for assessing the impact of
refactoring candidates on maintainability based on

matrix computation

Ah-Rim Han
Department of Computer Science

Korea University

Seoul, South Korea

arhan@korea.ac.kr

Doo-Hwan Bae
Department of Computer Science

Korea Advanced Institute of Science and Technology (KAIST)

Daejeon, South Korea

bae@se.kaist.ac.kr

Abstract—For automating refactoring identification, previous
methods for assessing the impact of a large number of refactoring
candidates may be computationally expensive. In our paper, we
propose an efficient method for assessing the impact of refactoring
candidates on maintainability based on matrix computation,
which is approximate but fast. This proposed method is evaluated
on a refactoring identification approach for jEdit and Columba,
two large-scale open source projects. The experiments show that
the proposed method requires less time for assessing refactoring
candidates and that the refactoring identification approach using
our proposed method also improves maintainability.

Keywords—Refactoring effect assessment method, refactoring
identification process, maintainability improvement

I. INTRODUCTION

Refactoring is a widely studied problem and one that is
commonly practiced in industry. In industry, refactoring is
largely a manual activity that relies heavily on a software
developer’s expertise; however, the research community seeks
to automate the refactoring process, so that refactoring can be
cheaper, more effective, and applied more rigorously.

There have been two lines of studies for automating the
refactoring identification process. In refactoring identification
using a stepwise selection method [1], [2], the refactoring that
best improves maintainability is selected in a stepwise manner
among many of the extracted refactoring candidates. The entire
process is repeated by re-extracting and re-assessing refactor-
ing candidates. The stepwise approach offers the advantage
of taking into account the changing system. Thus, complex
dependencies among refactorings need not be considered, and
newly created refactoring candidates can be taken into account.
However, the stepwise approach can be inefficient by selecting
only one refactoring for each iteration, even after assessing a
large number of refactoring candidates. Nonetheless, selecting
multiple refactorings at a time by simulating the application
of possible refactoring candidates that may be available after
performing n more iterations is difficult because the impact
of a large number of refactoring candidates needs to be
assessed. On the other hand, in search-based refactoring [3]–
[7], researchers try to find an optimal sequence of refactor-
ing applications using search techniques. During the search
process, the fitness function offers some guidance toward
improvements in fitness (i.e., maintainability). However, a

large number of refactoring candidates needs to be assessed in
order to find an optimal sequence of refactoring applications
using search techniques. When the system is large, the number
of refactoring candidates to be examined would be even larger.

In this context, the previous methods for assessing the
effect of refactoring candidates may be computationally ex-
pensive. For instance, for calculating a fitness function for
each refactoring candidate, each refactoring candidate needs
to be actually or virtually applied on a source code/abstracted
design model. Then a design quality evaluation model/function
should be calculated, which may require calculating metric(s)
of all classes existing in a system. For obtaining each metric
of a class, the dependencies that entities belonging to a class
have with the ones of the class itself (inner entities) or that
entities of a given class have with the ones of other classes
(outer entities) should be examined.

We therefore argue there is a need for an efficient (faster
and cheaper) method for assessing the impact of refactoring
candidates on maintainability, even if there is some loss of
precision. To identify the refactorings to be applied, the fitness
function offers some guidance toward improvements by esti-
mating the effects of refactoring candidates; it does not need to
be as accurate as the evaluation for the real effects of the refac-
torings application, although, in the state of the art approaches,
there is no distinction between evaluating the effects of the
applied refactorings and assessing (estimating) the impact of
the applied refactoring candidates. Recently, Search Based
Software Engineering (SBSE) communities has increased the
need for new forms of surrogate metrics that retain some of
the essence of the more computationally expensive metrics
but that sacrifice some degree of precision for computational
performance [8]. The methodology accepts that the surrogate
can be used to cheaply assess an approximate fitness to guide a
search-based approach. Likewise, in refactoring identification
using a stepwise selection method, if the assessment method
for assessing the impact of refactoring candidates were to be
more efficient, it would be easier to select multiple refactorings
at a time by simulating the application of refactoring candi-
dates that are available after performing n more (or just more
than one) iterations.

In our paper, we propose an efficient method for per-
forming faster impact assessment of the identified refactoring

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.69

453

opportunities, which is the most time consuming part in the
process. This is achieved by measuring the maintainability of
the examined system using a more simplistic dependencies
between methods and attributes in the system, and by per-
forming fast matrix-based computations to assess the impact of
each refactoring opportunity. The refactoring effect assessment
method is developed in the form of a delta table. Based
on matrix computation, the “maintainability variance” (i.e.,
delta of maintainability) of the application of a refactoring
candidate can be calculated at once by only changing link and
membership matrices (modeling configuration of the software
design) and manipulating those matrices. The matrix computa-
tion is fast, because there are various scientific and numerical
techniques to accelerate the speed (e.g., we use SciPy1 libraries
implemented for Python).

We applied the refactoring identification approach based on
the matrix-computation refactoring effect assessment method
(i.e., delta table) to two open-source projects, jEdit2 and
Columba3. Experiments reveal that the proposed method is sig-
nificantly more efficient than an existing method that performs
virtually each refactoring opportunity in a low-level design
model of the examined system and computes a metric (i.e.,
the Entity Placement Metric (EPM) [1]) for the entire system
after the virtual application of each refactoring.

We use Move Method refactoring to illustrate our approach.
Our proposed method of refactoring identification can be
extended to big refactorings as well once they are broken down
to elementary-level refactorings (e.g., Move Method or Move
Field refactorings), and duplications (e.g., conflicts) and the
dependencies among them are analyzed. In this paper, we do
not consider Move Field refactoring—moving attributes (i.e.,
fields) from one class to another. We agree with the opinion
[1] that fields are strongly conceptually bound to the classes
in which they are initially placed and are less likely to change
than methods once assigned to a class.

The rest of this paper is organized as follows: Section II
contains a discussion of related studies. Section III explains
the overall refactoring identification process and the need for
an efficient method for assessing the impact of refactoring
candidates. Section IV explains the detailed procedure for
calculating the delta table, describing the matrix computation-
based refactoring effect assessment method. In Section V, we
present the experiment to evaluate the proposed approach and
discuss the obtained results. Finally, we conclude and discuss
future research in Section VI.

II. RELATED WORK

For automated refactoring, several techniques and tools
for supporting the activities of the refactoring identification
process have been studied and proposed. Our paper is related
to the studies of assessing the design quality of the refactored
code.

Tahvildari and Kontogiannis [9] propose a metric-based
method for detecting design flaws and analyzing the im-
pact of the chosen meta-pattern transformations for improv-

1http://www.scipy.org/
2http://www.jedit.org/
3http://sourceforge.net/projects/columba/

ing maintainability. They detect design flaws based on pre-
defined quality design heuristics using object-oriented metrics
of complexity, coupling, and cohesion. However, the effects
of certain given meta-pattern transformations are evaluated
on object-oriented metrics as positive and negative. Since a
quantitative method for assessing the effects of meta-pattern
transformations is not available, the approach cannot determine
the most effective refactorings in terms of the degree of
maintainability improvement among the multiple candidates
of meta-pattern transformations. Du Bois et al. [10] provide
a table representing the analysis of the impact of certain
refactorings—that redistribute responsibilities either within the
class or between classes—on cohesion and coupling metrics.
As the work in [9], they specify the impact of refactorings
as ranges of best to worst cases as positive (i.e., improve-
ment), negative (i.e., deterioration), and zero (i.e., neutral); this
method also lacks a means of quantitative refactoring-effect
assessment, which is essential for making a decision on the
most effective refactorings for improving maintainability.

To quantify the impact of the degree of maintainability
improvement for assessing refactoring candidates, researchers
have used various types of design quality evaluation mod-
els/functions, such as the weighted sum of OO metrics [6],
QMOOD [5], distance measures [11], EPM [1], and maintain-
ability evaluation function [2]. However, to calculate design
quality evaluation models/functions, the refactorings should
be actually or virtually applied to the source codes or design
models. The actual application of the suggested refactorings
to source code adds a significant overhead due to disk write
operations performed once for applying each refactoring and
once for undoing it [1]. Even for the application of suggested
refactorings virtually, the cost of the assessment for the large
number of refactoring candidates—produced for each iteration
of the refactoring identification process or that are in the search
spaces required to be examined in search-based refactoring—
may be computationally expensive. For instance, to know the
effect of the application for each refactoring candidate in terms
of maintainability improvement, a design quality evaluation
model/function should be calculated after the application of the
refactoring candidate. This may require calculating metric(s) of
all classes existing in a system; and for obtaining each metric
of a class, the dependencies between inner entities or outer
entities should be examined.

III. REFACTORING IDENTIFICATION PROCESS

Refactoring identification refers to planning where to apply
which refactorings or how to apply the refactorings for meeting
the goals of refactoring, such as improving maintainability,
understandability, and testability.

A. Overview

For automating the refactoring identification process, we
use the systematic approach provided in our previous work [2]
using a stepwise selection method. The approach is composed
of three main activities.
Extraction: Refactoring candidates that are expected to im-
prove software design quality (i.e., maintainability) are ex-
tracted from an object-oriented source code.
Assessment: The effects of the extracted refactoring can-
didates can be assessed using various types of evaluation

454

models for maintainability (e.g., maintainability evaluation
function [2]). The effect of a refactoring candidate is assessed
as follows: the difference (Δ) of the evaluation models for
maintainability = the value of the evaluation model for main-
tainability after applying the refactoring candidate – the value
of the evaluation model for maintainability before applying
the refactoring candidate. This represents the maintainability
variance for the refactoring candidate and can be used as a fit-
ness function for refactoring selection criteria. When the larger
(or smaller) value of the evaluation model for maintainability
denotes the design having higher maintainability (i.e., more im-
provement in maintainability), the design should be converged
to have the larger (or smaller) value of the evaluation model
for maintainability (by applying a refactoring); therefore, the
fitness function is designed to be maximized (or minimized).
Selection: using the results of the assessment above, we select
the refactoring that most improves the maintainability among
the extracted refactoring candidates.

We formulate the preconditions of refactorings [1], [12] and
check them before selecting a refactoring to be applied to as-
sure behavior preservation. The selected refactoring is applied,
and extraction and assessment of refactoring candidates are re-
performed to select the next refactoring. The refactoring iden-
tification process is iterated until there are no more improve-
ments in fitness for the extracted refactoring candidates. When
no more refactoring candidates for improving maintainability
are found, the refactoring identification procedure is terminated
and the sequence of logged refactorings is generated.

It is worth noting that the proposed approach does not
refactor an object-oriented program in a fully automated man-
ner but automatically identifies a set of refactoring candidates
that can be safely applied for delivering the improvement
on maintainability. Thus, the software developer must make
the final decision on whether or not to apply the suggested
refactorings; even though the recommended refactorings are
beneficial from a maintainability perspective, they might be
rejected due to other factors.

B. Need for an Efficient Refactoring Effect Assessment Method

One of the major technical challenges in automated refac-
toring identification is determining the sequence of refactorings
to perform since each refactoring depends on the preceding
applied refactoring. This is because the application of a
refactoring changes the system structure and may make many
subsequent refactorings inapplicable (or less effective). Like-
wise, each applied refactoring may affect the applicability of
other refactoring candidates or influence their effects on design
quality factors, such as maintainability. This phenomenon is
known in evolutionary computation as epistasis [13].

In our previous work [2] and that of Tsantalis [1], the
refactoring that best improves maintainability is selected in
a stepwise way among many of the extracted refactoring
candidates; the entire process is then repeated by re-extracting
and re-assessing refactoring candidates. To restrict the number
of refactoring candidates to be examined for each iteration,
refactoring candidates are extracted using object-oriented de-
sign heuristics; and they are sorted according to, for example,
the scoring function [2] or the number of assesses with the
distance measure [1] (e.g., for each method, a target class—
which has the largest number of assesses with the smallest

distance measure—is determined as a refactoring candidate)
to choose part of the refactoring candidates. The stepwise
selection method takes into account the changing system,
which is an advantage. Thus, complex dependencies among
refactorings need not be considered, and newly created refac-
toring candidates can be taken into account. However, the
stepwise selection could be inefficient by selecting only one
refactoring for each iteration even after assessing a large num-
ber of refactoring candidates. Nonetheless, selecting multiple
refactorings at a time by simulating the application of possible
refactoring candidates that may be available after performing
n more iterations is very difficult. As the number of refac-
toring candidates increases, the number of possible refactor-
ing sequences increases exponentially. Therefore, scheduling
refactorings (i.e., selecting multiple refactorings at a time) by
investigating all possible refactoring candidates exhaustively
may become impossible (NP-hard).

In the refactoring identification using a stepwise selection
method, if the assessment method for assessing the impact
of refactoring candidates is efficient, it would be easier to
select multiple refactorings at a time (in short, it enables to
defer the refactoring selection) by simulating the application
of refactoring candidates that are available after performing n
more (or just more than one) iterations. Likewise, in search-
based refactoring [3]–[7], it would be easier to find an optimal
sequence of refactoring applications using search techniques,
which requires to examine a large number of refactoring
candidates.

For the need stated above, we propose an efficient method
for assessing the impact of refactoring candidates on main-
tainability based on matrix computation. By only changing
link and membership matrices (modeling configuration of
the software design) and manipulating those matrices, the
maintainability variance for the application of a refactoring
candidate on the design configuration can be easily obtained. A
more detailed explanation of the refactoring effect assessment
method is provided in Section IV.

IV. MATRIX COMPUTATION-BASED REFACTORING

EFFECT ASSESSMENT METHOD

Fig. 1 presents an overview of calculating the matrix
computation-based refactoring effect assessment method. The
refactoring effect assessment method is developed in the form
of a delta table, which enables the effects of extracted refac-
toring candidates to be assessed. In Section IV-A, we describe
how maintainability is measured in our paper and explain how
the abstracted design model capturing important entities af-
fecting maintainability is obtained from object-oriented source
code. In Section IV-B and Section IV-C, the definition and
calculation of the refactoring effect delta table are explained.

A. Construction of the Design Model

Our goal for refactoring is to improve maintainability
for the design of the object-oriented software. We measure
maintainability based on the following concept. In object-
oriented software, high cohesion and low coupling have been
accepted as important factors for good software design quality
in terms of maintenance [14]. Cohesion corresponds to the
degree to which entities of a class belong together, and

455

Refactoring Effect Assessment Method

Creating Link Matrix
Creating Membership

Matrix

Link Matrix Membership Matrix

Deriving Delta Table

Object Oriented Source Code

Design Model

Assessment

Delta Table

Fig. 1: Overview of calculating the matrix computation-based
refactoring effect assessment method (i.e., delta table) and
where this method is used in the refactoring identification
process for assessing refactoring candidates.

coupling refers to the strength of dependency established by
a connection from one class to another. For this reason, the
number of dependencies between inner entities should be as
large as possible (high cohesion). At the same time, the number
of dependencies between outer entities should be as small
as possible (low coupling). To this end, maintainability is
quantified as the number of dependencies of entities across
classes. This number naturally represents the lack of degree
of dependency among entities of the same class (lack of
cohesion) and, at the same time, the degree of dependency
among entities of different classes (coupling). As a result,
by applying refactorings, we aim to reduce this number in
order to improve maintainability. In other words, the fitness
function is designed to be minimized by reducing this number
for improving maintainability.

From the object-oriented source code, the design model
captures important entities and their dependencies affecting
maintainability and is in the form of a graph. The initial design
model GR = (VR, ER) is defined as follows:

• VR = {methods, attributes}
• ER = {method calls(method m1, method m2),

attribute accesses1(method m1, attribute a1),
attribute accesses2(method m1, method m2)}.

The vertices (VR) indicate the entities of methods and at-
tributes. The vertex contains membership information indicat-
ing that an entity belongs to which class. The edges (ER)
indicate the dependency between entities. We assume that a
dependency exists between two entities when these entities
are preferably located in the same class in order to improve
maintainability (in terms of low coupling and high cohesion).
To this end, an edge is connected between the entities when (1)
a method calls the other method (method calls), (2) a method

m2

Class B

m1

m3

Class A

m6
m7

Class C

Class D

m4

m8

m5

m
9

(a) Example design model n.

Dn A B C D

m1 1 - 1 1

m2 - -1 0 -2

m3 -3 - 0 1

m4 0 -1 - 0

m5 1 2 2 -

m6 0 -1 0 0

m7 0 -1 0 0

m8 0 -1 0 0

m9 1 2 2 -

Target Class

M
o
v
in
g
M
e
th
o
d

(b) Delta table Dn.

Fig. 2: Example of the design model and the refactoring effect
delta table.

accesses an attribute (attribute accesses1), or (3) two methods
access the same attribute (attribute accesses2).

In this paper, we focus on relations established by method-
calling procedures when capturing dependencies among enti-
ties in the design model. We do not consider the methods
of getter/setter, since they do not provide functionality. Note
that for dependencies that may affect maintainability, other
types of dependencies caused by structural relations between
classes (such as association, aggregation, composition, and
inheritance) can be considered.

B. Definition of the Refactoring Effect Delta Table

A refactoring effect delta table is derived to quantify the
degree of maintainability improvement after the application for
each elementary refactoring candidate. In this table, the row
elements indicate the moving methods and attributes while the
column elements indicate the target classes. Each cell in the
refactoring effect delta table indicates a Move Method refactor-
ing (row: moving method, column: target class). The value of
each cell of the table indicates maintainability improvement
(i.e., delta of maintainability) on the current design model,
which is obtained after the application of each Move Method
refactoring.

For example, in design model n of Fig. 2(a), the system
consists of four classes and each class contains methods A =
{m2, m6, m7 m8}, B = {m1, m3}, C = {m4}, and D = {m5

m9}. The dependencies are represented with directed edges.
For this design model, the refactoring effect delta table can be
obtained as in Fig. 2(b). Let MM(method m, class c) denote
each cell of the Move Method refactoring—moving method m
to target class c—and let Dn[MM(method m, class c)] denote
the delta of maintainability of the refactoring (i.e., moving
method m to class c) for design model n. Following this, by
using these notations, the value for delta of maintainability for
the refactoring, for example, MM[(m3, A)], referring to the
refactoring effect delta table is as follows: Dn[MM(m3, A)] =
-3. This means the refactoring carried out in moving method
m3 (located in class B) to target class A reduces the systems
dependencies (i.e., improves maintainability) by as much as
-3. This change in the value of the systems maintainability is
calculated by adding the number of decreasing dependencies
(-4) and the number of potentially increasing dependencies
(+1) across class A and class B. The decreasing dependencies
are (m7, m3), (m6, m3), (m8, m3), and (m2, m3), whereas

456

the increasing dependency is (m3, m1). The algorithm for
calculating the delta table is explained in Section IV-C.

C. Calculation of the Refactoring Effect Delta Table

The delta table is calculated as follows. First, the design
model is mapped to the Link matrix (L) and the Membership
matrix (M). The links and memberships can be directly
mapped from the edges and vertices of the design model GR.
The L denotes the link information where an entity (row) has a
dependency (a connection) to an entity (column). Let the cell
of this link be L(row entity, column entity). The cell value
of L denotes the strength of the relation. When there is a
dependency from an entity to an entity, then the value added
to the cell of L is 1; otherwise, when there is no dependency
between two entities, the cell of L is 0. Note that in L, the
direction of the edges (dependencies) is not distinguished and
the strength of the edges (dependencies) is considered. When
two entities, entity a and entity b, have a dependency, the
values of cells L(a, b) and L(b, a) both become 1. In short,
since the direction of a dependency (edge) is not differentiated,
L is symmetric. If those two entities have dependencies with
each other, then the values of cells L(a, b) and L(b, a) both
become 2. Since there is no dependency between fields, the
cell of L is 0. M denotes the membership information where
an entity (row) belongs to a particular class (column). The
cell of M is 1 when an entity (row) is placed in a class
(column); the cell of M is 0 when the entity is not located in
the class. Note that even though we do not consider Move Field
refactorings, the entities of attributes need to be considered in
the delta table. The membership and link information related to
attributes—e.g., where an attribute belongs to a particular class
(membership information) and a method assesses an attribute
or two methods assess the same attribute (link information)—
affects the calculation of the delta of maintainability.

The delta table is calculated as follows. The projection
matrix (P) is produced by multiplying the two matrices L and
M . P represents the link information from an entity (row) to
a class (column). We compute two types of P as follows.

PInt = LInt ×M, PExt = LExt ×M.

PInt (internal projection matrix) and PExt (external projection
matrix), each of which is computed by the multiplication
of M with LInt (matrix denoting internal links) and LExt

(matrix denoting external links), respectively. LInt represents
the internal links that are associated between entities in the
same class, while LExt represents the external links that are
associated between entities across classes.

By using the formulation below, we derive the delta table
(D) in which each cell is the delta of the maintainability value
after the application of each Move Method refactoring on the
design.

D = Inv(PInt)− PExt.

The cell of PInt is k ≥ 1 when the internal link exists from
the entity (row) to the class itself (column). This means that
moving the entity to other classes (other than the class itself)
will potentially increase the external link(s) in the system. We
use the Inv() function for PInt because, as stated above,
moving an entity to other class will increase the external
link(s). The Inv() function inverts the cell of PInt(entity, class

X=

M A B C D

m1 0 1 0 0

m2 1 0 0 0

m3 0 1 0 0

m4 0 0 1 0

m5 0 0 0 1

m6 1 0 0 0

m7 1 0 0 0

m8 1 0 0 0

m9 0 0 0 1

PInt A B C D

m1 0 1 0 0

m2 0 0 0 0

m3 0 1 0 0

m4 0 0 0 0

m5 0 0 0 2

m6 0 0 0 0

m7 0 0 0 0

m8 0 0 0 0

m9 0 0 0 2

LInt m1 m2 m3 m4 m5 m6 m7 m8 m9

m1 0 0 1 0 0 0 0 0 0

m2 0 0 0 0 0 0 0 0 0

m3 1 0 0 0 0 0 0 0 0

m4 0 0 0 0 0 0 0 0 0

m5 0 0 0 0 0 0 0 0 2

m6 0 0 0 0 0 0 0 0 0

m7 0 0 0 0 0 0 0 0 0

m8 0 0 0 0 0 0 0 0 0

m9 0 0 0 0 2 0 0 0 0

(a) PInt = LInt ×M

PExt A B C D

m1 0 0 0 0

m2 0 1 0 2

m3 4 0 1 0

m4 0 1 0 0

m5 1 0 0 0

m6 0 1 0 0

m7 0 1 0 0

m8 0 1 0 0

m9 1 0 0 0

LExt m1 m2 m3 m4 m5 m6 m7 m8 m9

m1 0 0 0 0 0 0 0 0 0

m2 0 0 1 0 1 0 0 0 1

m3 0 1 0 1 0 1 1 1 0

m4 0 0 1 0 0 0 0 0 0

m5 0 1 0 0 0 0 0 0 0

m6 0 0 1 0 0 0 0 0 0

m7 0 0 1 0 0 0 0 0 0

m8 0 0 1 0 0 0 0 0 0

m9 0 1 0 0 0 0 0 0 0

M A B C D

m1 0 1 0 0

m2 1 0 0 0

m3 0 1 0 0

m4 0 0 1 0

m5 0 0 0 1

m6 1 0 0 0

m7 1 0 0 0

m8 1 0 0 0

m9 0 0 0 1

X=

(b) PExt = LExt ×M

D A B C D

m1 1 0 1 1

m2 0 -1 0 -2

m3 -3 0 0 1

m4 0 -1 0 0

m5 1 2 2 0

m6 0 -1 0 0

m7 0 -1 0 0

m8 0 -1 0 0

m9 1 2 2 0

Inv(PInt) A B C D

m1 1 0 1 1

m2 0 0 0 0

m3 1 0 1 1

m4 0 0 0 0

m5 2 2 2 0

m6 0 0 0 0

m7 0 0 0 0

m8 0 0 0 0

m9 2 2 2 0

PExt A B C D

m1 0 0 0 0

m2 0 1 0 2

m3 4 0 1 0

m4 0 1 0 0

m5 1 0 0 0

m6 0 1 0 0

m7 0 1 0 0

m8 0 1 0 0

m9 1 0 0 0

_
=

(c) D = Inv(PInt)− PExt

Fig. 3: Example of calculating the delta table (D) of Fig. 2(b)
for the design of Fig. 2(a).

itself) as k → 0 and PInt(entity, other classes) as 0 → k. On
the other hand, the cell having k ≥ 1 in PExt means that the
external link exists from an entity (row) to a class (column).
Moving the entity to the class will decrease the external link(s)
in the system.

By following the procedure explained above, Fig. 3 il-
lustrates how to obtain the delta table (Fig. 2(b)) for the
corresponding design (Fig. 2(a)).

V. EVALUATION

We framed the following research questions for our exper-
iment.

RQ1. By how much is the matrix computation-based refac-
toring effect assessment method efficient for assessing
the impact of refactoring candidates?

RQ2. Does the refactoring identification approach based on
our method help improve maintainability?

Two projects are chosen as experimental subjects: jEdit and
Columba. They contain a relatively large number of classes
and have been widely used as experimental subjects. Table I
summarizes characteristics of each subject.

A. Experimental Design

For automating refactoring identification, we use the ap-
proach of selecting one refactoring for each iteration, as

457

TABLE I: Characteristics for each subject.

Name jEdit Columba

(Version) (jEdit-4.3) (Columba-1.4)

Type Text editor Email client

Class � 952 1506

Method � 6487 8745

Attribute � 3523 3967

explained in Section III-A. We compare 1) the approach based
on the delta table and 2) the same approach substituting the
delta table with the EPM [1], which is a method for assessing
the impact of refactoring candidates on maintainability based
on distance measures.

For each iteration in the approach of refactoring iden-
tification based on the delta table, the assessed refactoring
candidates are all the Move Method refactorings available
in the system. In the approach of refactoring identification
based on the EPM, the number of refactoring candidates to
be examined are restricted. At the first level, for each pair of
classes (source class and target class existing in a system), the
top 10 refactoring candidates highly ranked with the number of
entities that method m (belonging to a source class) accesses
from each target class are chosen. Then, at the second level,
all the chosen refactoring candidates are sorted in ascending
order according to the distance measure [1] and the top 50
refactoring candidates are assessed for each iteration. Under
the computing resources used in our experiment, we could not
accept all the extracted Move Method refactoring candidates
for all methods in a system. For each iteration, we select the
Move Method refactoring that most improves maintainability.
Therefore, among refactoring candidates, the refactoring that
most reduces the dependencies in terms of the value in the delta
table and that has the lowest value for the EPM is selected.
The lowest EPM should be selected because it uses distances
instead of similarities in its computation. The refactorings are
identified by repeating the refactoring identification process
until no more refactorings that improve maintainability (i.e.,
no improvement in the values of the delta table or the EPM)
are found.

To investigate that by how much the matrix computation-
based refactoring effect assessment method is efficient for
assessing the impact of refactoring candidates (RQ1), we
compare the two approaches on the elapsed time required
for performing each iteration and the total elapsed time. The
elapsed time for each iteration includes extracting refactoring
candidates, checking preconditions, updating the design model,
and recalculating the refactoring effect delta table, as well as
assessing the refactoring candidates. The elapsed time (sec) is
measured under the following conditions: processor 2.7GhHz
Intel Core i5, Memory 8G 1607 MHz DDR3, and Software
OS X 10.9.3. The refactoring identification process is repeated
until it reaches the final solution (where no more refactorings
that improve maintainability are found), and the total elapsed
time is obtained by accumulating the elapsed time of entire
iterations.

To investigate that the refactoring identification approach
based on our method help improve maintainability (RQ2),

TABLE II: Required time for performing the refactoring iden-
tification approach (explained in Section III-A) based on the
delta table and the EPM [1].

Time jEdit (Total: 236 iterations) Columba (Total: 90 iterations)

(sec) Delta Table EPM Delta Table EPM

Avg. time per iteration 1.66 317.99 2.33 602.69

Max. time per iteration 5.95 346.11 5.18 665.59

Min. time per iteration 1.49 315.21 2.16 596.81

Total time 391.81 75,046.46 209.29 54,241.87

we show that the refactored design that applies refactorings
identified using our approach contributes to improving the
maintainability of the system. The maintainability of the
refactored design of the code is evaluated using several main-
tainability indices, such as Method Similarity Cohesion (MSC)
[15] (cohesion metric), Message Passing Coupling (MPC)
[16] (coupling metric), and the maintainability evaluation
function [2] (which was used to assess the contribution to
improving maintainability of extracted refactoring candidates
in our previous paper [2]). In MSC, the similarity among all
pairs of methods is integrated and normalized to measure the
cohesiveness of the class. MSC is different from other cohesion
metrics in that it considers the degree of similarity between a
pair of methods in a class. MPC is a commonly used metric for
representing coupling and is appropriate for capturing small
code changes, such as moving a method to a class. MPC
for a class C indicates the number of static method calls for
all invoked imported methods. The maintainability evaluation
function is designed as cohesion

coupling to produce larger values as
the system becomes more maintainable (with higher cohesion
and lower coupling).

B. Results

Table II represents the elapsed time of each iteration and
the total elapsed time for performing the refactoring identi-
fication approach for jEdit and Columba, respectively. The
baseline is set to the approach that is terminated within smaller
iterations. The number of the total iterations for jEdit and
for Columba are 236 iterations and 90 iterations, respectively.
From this table, we can observe the following:

• The total time required to perform the approach with
the delta table is much less than the approach with the
EPM.

• In the approach with the delta table, the maximum
time per iteration is the time taken for performing the
first iteration. In short, constructing the design model
and calculating the link and membership matrices need
more time compared to the rest of the iterations (e.g.,
jEdit: max. 5.95 [sec] > avg. 1.66 [sec], Columba:
max. 5.18 [sec] > avg. 2.33 [sec]).

• As the systems become larger (jEdit: 952 classes,
Columba: 1506 classes), the number of refactoring
candidates that need to be assessed for each iteration is
increased; therefore, the computation time is increased
as well. For instance, the average time required for
each iteration is increased from jEdit to Columba as

458

(a) Method Similarity Cohesion (MSC) [15] (b) Message Passing Coupling (MPC) [16] (c) Maintainability evaluation function [2]

Fig. 4: Maintainability improvement for jEdit.

(a) Method Similarity Cohesion (MSC) [15] (b) Message Passing Coupling (MPC) [16] (c) Maintainability evaluation function [2]

Fig. 5: Maintainability improvement for Columba.

follows: avg. 1.66 [sec] → avg. 2.33 [sec] in the
approach with the delta table while avg. 317.99 [sec]
→ avg. 602.69 [sec] in the approach with the EPM.

• It is also notable that the rate of increased computation
time with respect to the system size is much less in the
approach with the delta table than the approach with
the EPM. For instance, for computing 90 iterations,
the total time is increased from jEdit to Columba as
follows: 154.63 [sec] → 209.29 [sec] for the approach
with the delta table while 28,622 [sec] → 52,241
[sec] for the approach with the EPM. Note that the
accumulated time to perform the same total number
of iterations should be compared, thus the time for 90
iterations (smaller total number iterations of Columba)
is chosen, even in jEdit the process is iterated 236
times in total time of 391.81 [sec] (delta table) and
75,046 [sec] (EPM).

The graphs of maintainability improvement are presented
in Fig. 4 and Fig. 5 for jEdit and Columba, respectively.
The refactoring selected for each iteration is applied, and
the maintainability of the refactored design is shown using
maintainability indices. For the approach with the delta table
in both jEdit and Columba, the values of the maintainability
evaluation function increase (in Fig. 4(c) and Fig. 5(c)) as the
selected refactorings are applied.

The trend in some maintainability indices is not
monotonous (especially for MSC), because the methods of
evaluating for the real effects of the applied refactorings and
assessing (estimating) the impact of refactoring candidates are
different. In other words, the former method represents the
maintainability indices (i.e., MSC, MPC, and the maintain-
ability evaluation function), while the latter method indicates
the values of maintainability in the delta table. Note that our
method is motivated by the observation that the method for
estimating the impact of refactoring opportunities does not
need to be as accurate as the evaluation method for the real
effects of the applied refactorings.

It is also noteworthy that the maintainability evaluation
function can be increased, even though MPC (coupling metric)
or MSC (cohesion metric) is deteriorated. This happens when
the decreasing degree of MPC (or the increasing degree of
MSC) is greater than the decreasing degree of MSC (or the
increasing degree of MPC). In such case, the positive impact
outperforms the negative impact on improving maintainability.
Generally, the cohesion metric should be increased while the
coupling metric should be decreased in order to improve
maintainability.

For jEdit, the improvement of MPC in the approach with
the delta table surpasses the improvement of MSC in the
approach with the EPM. The values of maintainability in the
delta table are measured based on the number of dependencies

459

across the classes, thus they are similar with the MPC. As
a result, in Fig. 4(c), the degree of improvement for the
maintainability evaluation function in the approach with the
delta table is larger than the one in the approach with the
EPM. To investigate the validity of the provided method, more
experiments need to be performed on various projects with
more conditions (e.g., scalability tests, correlation analysis
with the existing metrics). We plan to perform more extensive
experiments in future work.

It is important to emphasize that, with the experiment
for RQ2, we aim to show that the refactoring identification
approach using our method improves maintainability. The goal
of our work is not to enhance the capability of improving
maintainability of the refactoring identification approach. In
other words, we do not compete with the approaches of
identifying refactoring opportunities in the perspective of the
capability for maintainability improvement.

From the results above, we conclude that our refactoring
effect assessment method (i.e., delta table) is more efficient
than the EPM for estimating the impact of refactoring can-
didates; and the refactoring identification approach using our
method also contributes to identify refactoring candidates that
improve maintainability.

C. Threats to Validity

The internal restrictions or optimization techniques used for
measuring the EPM might not be fully considered. Therefore,
the results for evaluating maintainability shown in Fig. 4 and
Fig. 5 might be affected. Furthermore, in the approach of
refactoring identification based on the EPM, more than 50
refactoring candidates need to be assessed for each iteration.

When measuring elapsed time, other factors may affect
time. We regard this as causing a small variation, thus we
use the elapsed time for the comparison.

VI. CONCLUSION AND FUTURE WORK

In our paper, we developed a matrix computation-based
refactoring effect assessment method in the form of a delta
table and used this method for assessing the impact of refac-
toring candidates for an automated refactoring identification
approach. Compared to the fitness functions used in previous
studies, the maintainability variance for the application of a
refactoring candidate on the design configuration can be easily
obtained at once by only changing link and membership ma-
trices and manipulating those matrices. The refactoring effect
assessment method approximately measures the maintainabil-
ity of the software design using a more simplistic dependencies
between methods and attributes in the system, but calcu-
lates the values of fitness functions for refactoring candidates
faster (based on matrix computation), which provides efficient
computation for assessing the impact of a large number of
refactoring candidates. In the experiments, we showed that the
proposed method requires less time for assessing refactoring
candidates and the refactoring identification approach using
our method improves maintainability as well.

For future work, we plan to perform more extensive
experiments to show the value of the fast refactoring effect
assessment method. Specifically, we plan to perform a trade-
off analysis between precision and speed (computation time),

and their relationship in reaching the solution. For analyzing
the capability of assessing a large number of refactoring
candidates, we also plan to perform scalability tests.

ACKNOWLEDGMENT

This research was supported by Basic Science Re-
search Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education(NRF-
2013R1A6A3A01062920). This research was supported by the
MSIP(Ministry of Science, ICT and Future Planning), Korea,
under the ITRC(Information Technology Research Center)
support program (NIPA-2014-H0301-14-1023) supervised by
the NIPA(National IT Industry Promotion Agency).

REFERENCES

[1] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” Software Engineering, IEEE Transactions on,
vol. 35, no. 3, pp. 347 – 367, 2009.

[2] A.-R. Han and D.-H. Bae, “Dynamic profiling-based approach to identi-
fying cost-effective refactorings,” Information and Software Technology,
vol. 55, no. 6, pp. 966–985, 2013.

[3] M. O’Keeffe and M. Ó. Cinnéide, “Search-based refactoring for soft-
ware maintenance,” The Journal of Systems & Software, vol. 81, no. 4,
pp. 502–516, 2008.

[4] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detection
and resolution: A new way to save effort,” Software Engineering, IEEE
Transactions on, vol. 38, no. 1, pp. 220–235, 2012.

[5] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, “Automated
scheduling for clone-based refactoring using a competent GA,” Softw.,
Pract. Exper., vol. 41, no. 5, pp. 521–550, 2011.

[6] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” Proceedings of the 8th annual conference on Genetic and
evolutionary computation, p. 1916, 2006.

[7] M. F. Zibran and C. K. Roy, “Conflict-aware optimal scheduling of
prioritised code clone refactoring,” IET Software, vol. 7, no. 3, 2013.

[8] M. Harman, J. Clark, and M. Cinnédie, “Dynamic adaptive search based
software engineering needs fast approximate metrics,” in Proceedings
of the 4th International Workshop on Emerging Trends in Software
Metrics, San Francisco, USA, 2013.

[9] L. Tahvildari and K. Kontogiannis, “A metric-based approach to
enhance design quality through meta-pattern transformations,” Proc.
European Conf. Software Maintenance and Reeng, pp. 183–192, 2003.

[10] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring - improving
coupling and cohesion of existing code,” in Proceedings of the 11th
Working Conference on Reverse Engineering. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 144–151.

[11] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refactor-
ing,” in Software Maintenance and Reengineering, 2001. Fifth European
Conference on. IEEE, 2001, pp. 30–38.

[12] P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards automating
source-consistent uml refactorings,” Lecture Notes in Computer Science,
pp. 144–158, 2003.

[13] A. E. Eiben, P.-E. Raué, and Z. Ruttkay, “Solving constraint satisfaction
problems using genetic algorithms,” in International Conference on
Evolutionary Computation, 1994, pp. 542–547.

[14] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software
engineering. Prentice Hall PTR, 2002.

[15] C. Bonja and E. Kidanmariam, “Metrics for class cohesion and sim-
ilarity between methods,” Proceedings of the 44th annual Southeast
regional conference, pp. 91–95, 2006.

[16] W. Li and S. Henry, “Object-oriented metrics that predict maintain-
ability,” Journal of systems and software, vol. 23, no. 2, pp. 111–122,
1993.

460

