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a b s t r a c t

Context: The implied scenarios are unexpected behaviors in the scenario specifications. Detecting and
handling them is essential for the correctness of the scenario specifications. To handle such implied sce-
narios, identifying the causes of implied scenarios is also essential. Most recent researches focus on
detecting those implied scenarios, themselves or limited causes of implied scenarios.
Objective: The purpose of this research is to provide an approach to detecting the causes of implied sce-
narios.
Method: The scenario specification is a set of events and a set of relative orders between the events, and
enforces them for its implementation. Among the orders, a set of orders that cannot be inherently
enforced is the unenforceable orders. Obviously, existence of unenforceable orders leads the implied sce-
narios. To obtain the unenforceable orders, we first provide a method to represent each of the specifica-
tion and its implementation as a set of orders between events, called the causal order graph. Then, the
differences between them are the unenforceable orders.
Results: Because the unenforceable orders consist of events and their order relation that are specified in
the scenario specification, they can point out which part of the scenario specification should be consid-
ered to handle the implied scenarios. In addition, our approach supports the synchronous, asynchronous,
and FIFO communication styles without the state explosion or heavy computational overhead. To validate
our approach, we provide two case studies.
Conclusion: This approach helps a designer to effectively correct the scenario specification by identifying
where to be fixed, especially in large cases and under the various communication styles.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since the requirements specification determines the scope of
subsequent development phases, its correctness is important. As
scenarios become popular as a means of specifying the require-
ments [13], Message Sequence Charts (MSCs) [8] or Unified Model-
ing Language (UML) [12] interaction diagrams are widely used for
the scenario descriptions because of their proper formality and
ease of use. However, the scenario specification specified in the
MSCs or UML interaction diagrams may cause differences between
the specification and its implementation: the scenario specification
can describe only partial behaviors of a system, while its imple-
mentation has full behaviors. Such differences are referred to as
the implied scenarios [2,15]. More formally, the implied scenarios
are differences between a scenario specification and its minimal
implementation [15,11], which satisfies the scenario specification.
In this paper, we refer to the minimal implementation as imple-
mentation model. Note that the implementation model is not the
source code, but a smallest set of behaviors satisfying the specifica-
ll rights reserved.

+82 423508488.
tion. Therefore, the implied scenarios means inherent but unex-
pected behaviors, and they should be identified to obtain the
correct scenario specification.

Several works have been proposed to detect the implied scenar-
ios [9,11,15]. In these approaches, the model-checking technique is
used through the synthesis of an automata-based implementation
model. Such approaches have two limitations. First, the model-
checking technique can only identify implied scenarios as a form
of error traces. Such error traces do not indicate the locations in
the scenarios specification where the designer should consider to
handle the implied scenarios. We refer to such locations as the
causes of implied scenarios. With the knowledge of the causes of im-
plied scenarios, it certainly becomes more easier to handle the im-
plied scenarios. Moreover, automatic identification of the causes
enables (semi-)automatic treatment of the implied scenarios.
Another limitation is that they assume only the synchronous
communication style in the scenario specification. This is because
handling the asynchronous communication style may lead to the
state explosion in the synthesis of the automata-based implemen-
tation model. However, emerging software, such as web services
and embedded software, requires the asynchronous communica-
tion style. Therefore, in the detection of the implied scenarios,
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the consideration of the asynchronous communication style as
well as the synchronous one is needed.

To address those limitations, in this paper, we provide an ap-
proach to detecting unenforceable orders to identify causes of im-
plied scenarios. Essentially, the scenario specification enforces
relative orders between events. If some orders among them cannot
be enforced in an implementation, such orders cause implied sce-
narios. We call such orders the unenforceable orders. (We will give
more detailed explanation on them in Section 5.1.) To detect the
unenforceable orders, our approach creates a graph that represents
the orders enforced by the scenario specification. Based on the
graph, we also construct another graph representing the orders
that are enforceable in the implementation model. Then, we calcu-
late differences between those graphs. These represent the unen-
forceable orders.

Our approach has the following advantages:

� Since the unenforceable orders correspond to the events
of the scenario specification, they can be used as the causes of
implied scenarios, which indicate which part of the scenario
specification should be considered to handle the implied
scenarios.
� As our approach does not synthesize any automata-based

model, it can handle the asynchronous communication without
producing the state explosion. Based on the asynchronous
communication, our approach can also handle the various com-
munication styles, including the synchronous and FIFO commu-
nication style.
� Since the two graphs are based on the scenario specification and

its implementation model, not only are the implied scenarios
caused by the non-local choice detected, but also the input–out-
put implied scenarios.
� Our approach provides the fine-grained detection because we

separately use the sending and receiving events unlike previous
approaches [9,11,15].
� Our approach is applicable for the large-scale scenario specifica-

tion because the complexity of our algorithm is O(jVspecj3) where
Vspec is a set of events in the scenario specification.

The rest of this paper is organized as follows: In Section 2, we
discuss related works. Section 3 defines several terms and con-
cepts. In Section 4, we explain the loop unrolling to deal with loops
in the scenario specification. Section 5 defines the unenforceable
orders, and presents the algorithms. In addition, the complexity
of the algorithms is shown in order to show the efficiency of our
approach. In Section 6, we present a technique to support loops
and other communication styles. After presenting two case studies
in Section 7, we conclude our approach with the discussion of fu-
ture work in Section 8.
2. Related work

The term ‘‘implied scenario’’ was first introduced by Alur et al.
[2]. They provided a framework to verify that a given scenario
specification is realizable with some implementation. Their realiz-
ability is classified on two levels: weak and strong. The weak real-
izability is satisfied if a scenario specification has all the
combinations of the local behavior of each process, while the
strong realizability is satisfied if a scenario specification satisfies
the weak realizability and if it is deadlock-free. If those realizabil-
ities are not satisfied, the scenario specification has the implied
scenarios. Their work focuses on determining whether a scenario
specification has implied scenarios or not, and is limited to the
specifications that specify finite system behaviors, which means
that no loop is allowed in the specification.
Uchitel et al. provided the method and tool for detecting im-
plied scenarios [15]. Their method can deal with infinite system
behaviors which are expressed by loops of an high-level message
sequence chart (hMSC). They presented an algorithm that builds
the Labeled Transition System (LTS) behavior model as the
implementation model. They also presented the way of obtaining
differences between the MSC specification and its implementa-
tion model. Since they use the model-checking technique to ob-
tain the differences, their algorithm can produce the implied
scenarios in the form of error traces, so that their work cannot
identify the causes of implied scenarios. In addition, their work
is applicable only to the synchronous communication style
and assumes the synchrony hypothesis, which means that there
are no events between sending and receiving events of a
message.

Letier et al. have extended Uchitel et al.’s work by considering
an observation that the reception of a message cannot be con-
trolled, but is monitored [9]. They refer to the implied scenarios,
resulting from their approach, as the input–output implied scenar-
ios. Their work still assumes the synchronous communication and
synchrony hypothesis.

Muccini proposed another approach to detecting implied sce-
narios, not involving the use of the model-checking technique. In-
stead, it starts from the detection of the non-local choices. Then, by
investigating the events occurring after the non-local choices, it
detects the implied scenarios. Although this approach is not aimed
at detecting the causes of implied scenarios, it can be used to
identify which choices are problematic through the intermediate
results. However, this approach does not touch upon the input–
output implied scenarios and assume the synchronous communi-
cation and synchrony hypothesis.

Baker et al. proposed an approach to detecting and resolving
semantic pathologies in UML sequence diagrams [5]. Based on a
graph, which is generated from the UML sequence diagram and
referred to as the causal order graph, they proposed the condi-
tions for detecting the pathologies. The approach supports various
communication styles. However, their work has three limitations.
First, the approach cannot be used when the scenario specifica-
tion has loops. Second, since the approach does not consider
the state-merging effects, the detected pathologies may omit
some implied scenarios. Third, the synchrony hypothesis is par-
tially assumed.

Recently, in the service-oriented architecture area, several re-
searches for detecting the implied scenarios were presented as a
name of ‘‘check of local enforceability’’ [7,19]. However, those
works only check whether the implied scenarios exist or not, like
Alur et al.’s work [2].
3. Background

3.1. UML scenario specification

Our approach uses the scenario specification that is represented
as UML interaction diagrams. We refer to it as the UML scenario
specification. Since it has similar structures with the MSC scenario
specification in [15], their formal definitions are nearly the same.
In spite of that, we reformulate our UML scenario specification to
clearly describe our approach. Our UML scenario specification con-
sists of basic sequence diagrams (bSDs) and a basic interaction
overview diagram (bIOD) which are simplified from original se-
quence diagrams and an interaction overview diagram in UML
2.0, respectively.

Definition 1. A basic sequence diagram B is a structure
(O,M,L, loc,<), where:
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Fig. 1. Example of the causal order graph.
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� O is a set of event occurrences. It consists of a set of sending
occurrences S and a set of receiving occurrences R.
� M is a set of messages. A message m is a structure (s,r,n) such

that s 2 S; r 2 R and n is the label of the message. In addition,
we denote a labeling function lbl such that lbl(s) = lbl(r) = n for
(s,r,n) 2M.
� L is a set of lifelines.
� loc : O ? L maps an event occurrence to a lifeline. loc�1(l) is a set

of event occurrences on a lifeline l.
� < is a set of total orders <l # loc�1(l) � loc�1(l) between event

occurrences. The orders depict an order relationship between
two adjacent event occurrences.
Definition 2. The basic interaction overview diagram I is a graph
(E,V), where V is a set of vertices that consist of control vertices
and vertices referencing bSDs, and E # (V � V) is a set of directed
edges that represent control flows. The control vertices are catego-
rized into initial, final, decision, and merge.

Sequence diagrams in UML 2.0 have combined fragments to de-
scribe control structures or provide restricted views. We omit the
combined fragments in the definition of the bSD because such con-
trol structures can also be represented by control vertices of the
bIOD, and the restricted views do not affect behaviors presented
by the bSD.

A bIOD provides a means of describing control flows between
bSDs. It is a graph that consists of the vertices referencing bSDs,
control vertices, and edges representing the control flows between
the vertices. The control vertices consists of initial, final, decision,
and merge. In this paper, we do not use the fork and merge nodes.
While the different lifelines may concurrently behave, those nodes
may introduce another parallelism. There are no exact definitions
of its semantics. To deal with those parallelisms, we should first
define their formal semantics. Since that task is not within the
scope of this paper, we assume that the fork and merge nodes
are not used in our scenario specification. We also assume that
there is only one initial vertex for simplicity.

Now we define the UML scenario specification. It consists of a
set of bSDs, a bIOD, and reference relationships between them.
The definition of a UML scenario specification is as follows:

Definition 3. A UML scenario specification is a structure ðB; I ; ref Þ,
where B is a set of bSDs, I is a bIOD, and ref is a mapping function
from a referencing vertex in I to a referenced bSD in B.
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Fig. 2. Example for loop unrolling.
3.2. Causal order graph

The UML sequence diagram describes the sending and receiving
events of the messages, and the orders between them. Those
events and orders can be formalized as a partially ordered set. To
represent the partially ordered set, many prior works use a direc-
ted graph. The graph is referred to as the causal order graph. In
the causal order graph, each vertex represents the sending or
receiving event in the sequence diagram, and each edge indicates
that the event that corresponds to its target vertex should occur
after the occurrence of the event that corresponds to its source
vertex.

Fig. 1 shows an example bSD and its causal order graph. For a
clear explanation, we denote the sending event and receiving event
of a message as sn and rn, respectively, where n is an identifier for
each message. In Fig. 1a, the events s1 and r1 are sending and
receiving events for the message ‘‘questionnaire’’, respectively. Since
a sending event should occur before its corresponding receiving
event, the causal order graph has an edge from s1 to r1 as shown
in Fig. 1b. The event s1 is located in a place above the event s2 in
Fig. 1a. According to the semantics of the sequence diagram, this
means that the event s2 should arise after the event s1. Hence,
the causal order graph has an edge from the event s1 to the event
s2. In this way, a causal order graph for a sequence diagram can be
obtained. Its formal definition is as follows:

Definition 4. A causal order graph is defined as a directed graph
G ¼ ðE;VÞ. V represents the set of vertices that represent events,
while E # V � V represents a set of edges which denote orders
between vertices.
4. Loop unrolling

When a system is described by the causal order graph and it has
loops, the causal order graph also has loops. However, since the
loops in the causal order graph represent concurrent events, the
causal order graph is not appropriate for representing the UML sce-
nario specification with loops. Therefore, we devised a loop-unroll-
ing technique.

The basic idea for the loop-unrolling technique is as follows.
Let’s assume that the bSD b has an unenforceable order and b is
in a loop. After the loop is unrolled, the bSD b still has the unen-
forceable order.

In addition to the basic idea, we need to consider the concatena-
tions between bSDs since the concatenations introduce another
causal order relationship. For example, in Fig. 2, an event s4 in
the bSD ‘‘payStock’’ should happen after an event r1 of the bSD
‘‘provide’’ because the bSD ‘‘payStock’’ is one of the next bSD of
the bSD ‘‘provide’’ and s4 and r1 are on the same lifeline: the order
‘‘r1 to s4’’ is enforced. In order to prevent loss of such orders, we
need to conserve them after the loop unrolling.

With this idea, we devise transformation templates of a generic
loop as shown in Fig. 3. Fig. 3a shows the generic loop of the bIOD.
Each circle means a subgraph of the bIOD. To make it as a simpler
form, it is re-arranged as shown in Fig. 3b. Then, the re-arranged
loop is unrolled as shown in Fig. 3c.

Before justifying our unrolling technique, let’s define the causal-
ity relation e � e0 which means that the event e should happen
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before e0. Note that the causality relation � has the same semantics
with the causal order graph.

Now, we can show the validity of our unrolling technique with a
simple argument. First, since Fig. 3c has all the bSDs in Fig. 3a, cau-
sality relations in each bSD are obviously preserved after the loop
unrolling. Let eA, eB, eC, and eD be events that are arbitrarily selected
from A, B, C, and D in Fig. 3, respectively. Then, Fig. 3a directly
shows the causality relations eA � eB,eB � eD, eB � eC, and eC � eB.
By the transitiveness of the causality relation, the relations eA � eB,
eA � eC, eA � eD, eB � eB, eB � eC, eB � eD, eC � eB, eC � eC, and eC � eD

are inferred. These causality relations are preserved in Fig. 3c.
Therefore, Fig. 3c conserves all causality relations of Fig. 3a. This
means that all orders that are enforced by an original UML scenario
specification are preserved in the unrolled UML scenario specifica-
tion. In addition, since Fig. 3a is a generic loop, our loop unrolling
can be applied to all cases.

The form for the unrolled loop, shown in Fig. 3c, has more in-
stances of ‘‘B’’ and ‘‘C’’ than the original one. For the optimization
of our approach, we devised several techniques to reduce them.
However, since the optimization is not in the scope of this paper,
we will not describe them.
UML scenario specification

Extracting a causal order 
graph from the speci cation

Creating a causal order graph 
as an implementation model

Implementation order graphSpecification order graph

Calculating differences

Unenforceable orders

Fig. 5. Overview of our approach.
5. Detecting unenforceable orders

The unenforceable orders are relative orders that are enforced
by the scenario specification, but cannot be enforced when the
specification is implemented. Obviously, if they exist in a scenario
specification, the implied scenarios also exist. Since they consist of
the events that are specified in the scenario specification, they can
be pointed out in the scenario specification itself. Therefore, the
unenforceable orders can be used to identify the causes of implied
scenarios. In our approach, the unenforceable orders are obtained
by differentiation between two causal order graphs representing
the scenario specification and its implementation model. We refer
to the two causal order graphs as the specification order graph and
the implementation order graph, respectively.

Now we briefly illustrate our idea of detecting the unenforce-
able orders with an example shown in Fig. 4. In Fig. 4a, the object
‘‘Producer’’ should send the message ‘‘provide’’ to the object ‘‘Store’’
before the object ‘‘Buyer’’ sends the message ‘‘buy’’. The ‘‘Buyer’’ can-
not know whether the ‘‘Producer’’ already sent the message ‘‘pro-

vide’’ or not. Thus, the ‘‘Buyer’’ may send the message ‘‘buy’’ before
the message ‘‘provide’’ is sent. By this reasoning, we can come up
with an implied scenario as shown in Fig. 4b. This reasoning shows
another fact: the order ‘‘r1 to r2’’ is defined in the scenario specifi-
cation, but not held in the implementation model. It means that
the order ‘‘r1 to r2’’ is included in specification order graph, but
not in the implementation order graph. According to the above def-
inition, the order ‘‘r1 to r2’’ is an unenforceable order.

If the order can be enforced by introducing additional mecha-
nisms, such as the coordinator, the implied scenario shown in
Fig. 4b is also removed. Therefore, we can regard the unenforceable
order ‘‘r1 to r2’’ as a cause of implied scenarios.

Fig. 5 illustrates the overview of our approach. Our approach
consists of the following steps: (1) From the UML scenario specifi-
cation unrolled by our loop-unrolling technique, the specification
order graph is obtained. (2) Then, the implementation order graph
is obtained by manipulating the specification order graph. (3) Fi-
nally, the differences between the specification order graph and
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implementation order graph are calculated. For simplicity, in this
section, we consider only the asynchronous communication style.
The FIFO and synchronous communication styles will be covered
in Section 6.

Now, according to the overview, we first define the enforceable
orders with the definitions of the specification and implementation
order graph in Section 5.1. Then, to show the efficiency of our ap-
proach, the algorithms for detecting the enforceable orders will be
shown in Section 5.2.

5.1. Definitions

5.1.1. Specification order graph
The specification order graph represents order relationships

specified in the scenario specification. Since the UML scenario
specification consists of bSDs and a bIOD, we first describe the
definition of the specification order graph of a bSD. Then, we define
the specification order graph of the whole UML scenario
specification.

In Section 3, we briefly illustrated the causal order graph of the
bSD. Now, we provide its formal definition.

Definition 5. The specification order graph gB
spec of a bSD

B = (O,M,L,loc,<) is defined as follows:

gB
spec ¼ ðfðb; eÞjðb; eÞ 2 <l;

8l 2 Lg [ fðs; rÞjðs; rÞ 2 Mg;OÞ

Fig. 6 shows a UML scenario specification of a small delivery
system. The lower parts of Fig. 6, ‘‘sd deliveryA’’ and ‘‘sd deliveryB’’,
are borrowed from Letier et al.’s work [9]. To effectively show
our approach, we extend the example. The scenario specification
in Fig. 6 describes the procedure of product sales with three bSDs
and one bIOD. When the scenario begins, the delivery department
transmits an order to the factory to produce a product. Then, the
client requests a product from the seller with the type of the prod-
uct. The seller who receives the request from the client transmits
the request to the delivery department. Finally, the delivery
department sends the requested product to the client. The specifi-
cation order graphs for the bSDs in Fig. 6 are shown in Fig. 7.

Through the composition of the specification order graphs of
bSDs, we can define the specification order graph for the entire sce-
nario specification. We first define the composition operator be-
sd deliveryA

sd produce

Client Seller Delivery Dpt.
requestA
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deliveryOrder
3 3

4

5 5

4
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Fig. 6. Example scena
tween two bSDs. Then, by using it, the definition of the
specification order graph for the entire scenario specification will
be given. There are two kinds of composition: the asynchronous
concatenation and synchronous concatenation [4]. The synchro-
nous concatenation assumes the synchronization scheme, such as
a coordinator or mutex, while the asynchronous concatenation
does not. In this paper, the asynchronous concatenation is only
used because we do not assume such a synchronization scheme.
In the asynchronous concatenation, each lifeline is independently
composed. To formalize the asynchronous concatenation, we de-
vise an asynchronous concatenation operator�. The� sequentially
concatenates causal order graphs of two bSDs in an asynchronous
manner. According to the definition of asynchronous concatena-
tion [4], if g1 � g2 is given and the g1 and g2 are causal order graphs,
the asynchronous concatenation operator creates a new edge that
connects the last event of g1 to the first event of g2 in each lifeline.

Definition 6. Asynchronous concatenation operator � for the
causal order graphs gB1 and gB2 is defined as follows:

gB1 � gB2 ¼ gB1 [ gB2 [ ðE�; ;Þ
E� ¼ fðmaxðgB1 jlÞ;minðgB2 jlÞÞj

8l 2 LB1 ;B2g

where LB1 ;B2 is a set of lifelines of B1 and B2, the union operator [ re-
turns a graph that has all edges and vertices in both operands, and
the projection operator jl results in a subgraph that only has vertices
whose corresponding events are on a lifeline l with edges connect-
ing them. min(g) and max(g) functions return initial and final verti-
ces of a graph g, respectively.
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Definition 7. The specification order graph for UML scenario spec-
ification U ¼ ðB; I ; ref Þ is defined as follows:

gU ¼
[

b1b2 ...bn2PðIÞjB

gref ðb1Þ � gref ðb2Þ � � � � � gref ðbnÞ

where PðIÞ is a set of all paths from the initial vertex to all vertices
in I , and jB is a projection operator that removes control vertices of
a given path and keeps vertices referencing bSDs.

For example, in Fig. 6, there are two paths: ‘‘sd produce’’ to ‘‘sd
deliveryA’’ and ‘‘sd produce’’ to ‘‘sd deliveryB’’. Thus, to obtain the
specification order graph for the whole scenario specification, the
asynchronous concatenation is used for composing those paths.
For the path ‘‘sd produce’’ to ‘‘sd deliveryA’’, the lifeline ‘‘Delivery

Dpt.’’ exists in both the bSDs. The last event of ‘‘Delivery Dpt.’’ is
r2 in the bSD ‘‘sd produce’’ and the first event of ‘‘Delivery Dpt.’’ is
r4 in the ‘‘sd deliveryA’’. Thus, the asynchronous concatenation oper-
ator creates an edge from r2 to r4. Similarly, the events r2 and r7 are
connected according to the path ‘‘sd produce’’ to ‘‘sd deliveryB’’. Con-
sequently, we can obtain the specification order graph as shown in
Fig. 8 for the scenario specification shown in Fig. 6.

5.1.2. Implementation order graph
The implementation order graph is an implementation model

represented as a form of the causal order graph. From the literature
[18,3,9], we have observed that the three properties of the imple-
mentation make the implementation model different from the sce-
nario specification: (1) From the viewpoint of each lifeline, the
states that are reached by the same sequence of receiving events
are unified [18,3]; (2) the receiving events cannot be controlled,
but can be monitored [9]; and (3) lifelines may make different
decisions on the non-local choice [6]. To reflect the properties in
the implementation order graph, the first and third properties
are reflected by the addition of permutating orders and non-local
choice orders, respectively. The second one is handled by the re-
moval of uncertain orders. In this subsection, we will explain such
orders and present the definition of the implementation order
graph.

Here, we first explain the permutating orders with an example
shown in Fig. 6. In Fig. 6, the object ‘‘Delivery Dpt.’’ falls into the
same state when the event r4 or r7 occurs because it receives the
same sequence of the messages (‘‘product’’ and ‘‘deliveryOrder’’). In
the both cases, the object ‘‘Delivery Dpt.’’ can send the message
‘‘deliveryA’’ or ‘‘deliveryB’’ arbitrarily. This means that not only s5,
but also s8, can occur after r4. Similarly, s5 can occur after r7. How-
ever, the specification order graph in Fig. 8 does not have the order
‘‘r4 to s8’’ or ‘‘r7 to s5’’. Thus, to obtain the implementation order
graph, those orders should be added to the specification
order graph. Such orders are the permutating orders. Fig. 9 presents
the specification order graph shown in Fig. 8 to which the permu-
tating orders are added. In Fig. 9, the bolded lines are the permu-
tating orders. In general, when two or more events e1,e2,. . .,en
s3 r3

r4s4

s5r5

s6 r6

r7s7

s8r8

r1

s2

s1

r2

Fig. 8. Specification order graph of Fig. 6.
lead an object to the same state s and their very next events
e01; e

0
2; . . . ; e0k are specified in the scenario specification, the object

in the state s can proceed to any of e01; e
0
2; . . . ; e0n regardless of other

conditions.

Definition 8. For the specification order graph gUspec ¼ ðE;VÞ, the
permutating orders are defined as follows:

EUpm ¼ ðvn;v 0mþ1ÞjhðvnÞ ¼ hðv 0mÞ; hðvnþ1Þ
�

–hðv 0mþ1Þ; ðvn;vnþ1Þ; ðv 0m;v 0mþ1Þ 2 E; vn;v 0m 2 R
�

hðvnÞ ¼ flblðv1Þlblðv2Þ . . . lblðvnÞjv1v2 . . . vn 2 pðvnÞg

where p(v) is a set of paths from initial vertex to a vertex v;R is a
set of receiving events, and lbl(v) returns a message label corre-
sponding to v.

In the above definition, we added the condition ‘‘ hðvnþ1Þ –
hðv 0mþ1Þ’’ to exclude useless edges. For instance, if the sending
events s5 and s8 send the same messages in Fig. 9, regardless of
inserting the orders ‘‘ r4 to s8’’ and ‘‘r7 to s5’’, the behaviors of
Fig. 9 are the same as in Fig. 8.

Second, we present the uncertain orders. In the implementation
model, the receiving events cannot be controlled, but only moni-
tored in an object [9]. This means that an object cannot control
receiving events, so they can only be controlled by the messages
sent from other objects. Therefore, if the specification order graph
has an order enforcing that a receiving event occur after another
event and those events exist in the same lifeline, then the order
may not be preserved in the implementation order graph. Such or-
ders are the uncertain order. To obtain the implementation order
graph, the uncertain orders are removed from the specification or-
der graph.

Definition 9. The uncertain orders for the specification order
graph gUspec ¼ ðE;VÞ are defined as follows:

EUuc ¼ fðv1;v2Þjlocðv1Þ ¼ locðv2Þ; ðv1; v2Þ 2 E; v2 2 Rg

where R is a set of the receiving events
It is worth explaining that the removal of the uncertain orders

effectively reflects the characteristics of the receiving events. Note
that the receiving events cannot be controlled by an object itself,
but can be controlled by messages sent from another object. The
removal of the uncertain orders makes the receiving events free
in an object, but the receiving events should arise after their corre-
sponding sending events. Consequently, when we remove the
uncertain orders, the characteristics are reflected. For example,
Fig. 10 shows the implementation order graph that is obtained
by adding the permutation orders and removing the uncertain or-
ders. With the removal of the uncertain orders, the orders ‘‘s1 to r2’’,
‘‘s3 to r5’’, ‘‘r2 to r4’’, ‘‘r2 to r7’’ and ‘‘s6 to r8’’ are removed. With the
removal of the order ‘‘s1 to r2’’, the object ‘‘Delivery Dpt.’’ shown in
Fig. 6 cannot solely control the receiving event r2. However, the
event r2 can still be controlled by the message ‘‘product’’, which is
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represented as the order ‘‘s2 to r2’’ in Fig. 10. This example shows
that the characteristics of the receiving events are reflected in
the removal of the uncertain orders.

The non-local choice is the last characteristics of the implemen-
tation model. Each object that has control can independently and
concurrently behaves in an implementation model. Therefore,
when each object arrives at a decision node of the interaction over-
view diagram, it chooses its direction if it has control, regardless of
other objects’ decisions.

Fig. 11 shows a simple example of the non-local choice. In the
example, two mutually exclusive cases of scenarios are described:
in one case, the ‘‘Sensor’’ sends the message ‘‘pressure’’; in the other
case, ‘‘Control’’ sends the message ‘‘off’’. On the other hand, with re-
spect to the implementation model, both the ‘‘Sensor’’ and ‘‘Control’’
can send the message ‘‘pressure’’ and ‘‘off’’, respectively.1 Therefore,
although those two cases are mutually exclusive, the events s1 and s2

may occur at the same time. This is the non-local choice.
To represent the non-local choice, we insert orders between

events such as s1 and s2 in Fig. 11. Such events should satisfy the
following conditions.

� With the non-local choice, some events, located right after a
decision node, are decided. Thus, each event is the very first
event that occurs for each lifeline after a decision node
� Both events should be sending events. Receiving events are not

decided by each lifeline itself, but by a lifeline that has opposing
sending events.
1 The ‘‘Sensor’’ and ‘‘Control’’ have controls and there are neither communications
nor coordinators between them. Note that a sending event can be controlled by a
lifeline which has the sending event.
� The two events should be on neither the same lifeline nor the
same bSD because if the two events are on the same lifeline
or the same bSD, those two events can be determined by a life-
line locally.

From the conditions, we can define the non-local choice orders
as follows.

Definition 10. The non-local choice orders for the specification
order graph U ¼ ðB; I ; ref Þ are defined as follows:
Finally, using the permutating orders, uncertain orders, and
non-local choice orders, we can give the definition of the imple-
mentation order graph as follows:

Definition 11. The implementation order graph for the specifica-
tion order graph gUspec ¼ ðE;VÞ is defined as follows:

gUimpl ¼ E n EUuc [ EUpm;V
� �

where n is the set minus.
With the above definitions, the implementation order graph of

Fig. 6 is given in Fig. 10.

5.1.3. Unenforceable orders
The unenforceable orders are identified by differentiating be-

tween the specification order graph and the implementation order
graph. Essentially, both graphs represent partially ordered sets
with transitiveness. Thus, to obtain valid differences between
them, the transitive closures of both graphs should be used in
the differentiation. For example, in the first column of the table
in Fig. 12, the differences between the specification order graph
and the implementation order graph in the original graph are the
orders ‘‘r1 to r2’’ and ‘‘s2 to r3’’. However, the order ‘‘s2 to r3’’ is tran-
sitively satisfied in the implementation order graph. To avoid this,
the transitive closures of both graphs should be used. However, a
Differences
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r3 r2

r1

r2

r1

r3

s2

Fig. 12. Transitive closure and reduction.
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problem still remains. As shown in the second column of the table
in Fig. 12, the orders ‘‘r1 to s3’’, ‘‘r1 to r2’’ and ‘‘r1 to r3’’ are the dif-
ferences between the transitive closures of the two graphs. Only
the order ‘‘r1 to r2’’ is an essential cause because the absence of
the order ‘‘r1 to r2’’, which is originally given by the specification,
leads to the absence of the orders ‘‘r1 to s3’’ and ‘‘r1 to r3’’ as a result
of the transitive closure. To minimize the result, we adopted the
transitive reduction. It produces a minimal graph that preserves
the same partial orderedness in the original one. With the transi-
tive reduction, we can obtain the final result as shown in the third
column of the table in Fig. 12.

However, the transitive reduction causes another problem
although, in Fig. 12, the differentiation between the transitive
reductions of the specification order graph and implementation or-
der graph correctly identifies the unenforceable orders. When the
transitive reduction removes an order from a graph and does not
remove the order from another graph, the order is identified as
one of the unenforceable orders. Since the orders that are removed
by the transitive reduction are always conserved by remaining or-
ders, the causes that correspond to such orders are invalid. Thus,
we calculate the differences between the transitive closure and
transitive reduction of graphs in order to obtain the unenforceable
orders.

Definition 12. The unenforceable orders for UML scenario speci-
fication U are defined as follows:
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Fig. 13. Transitive reductions of Figs. 8 and 10.
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gUcause ¼ gUnspec [ gUnimpl

gUnimpl ¼ trðgUspecÞ n ðgUimplÞ
�

gUnspec ¼ trðgUimplÞ n ðgUspecÞ
�

where tr is a transitive reduction and ⁄ is a transitive closure. The set
minus g1ng2 between the graphs g1 = (E,V) and g2 = (E

0
,V) is defined

as (EnE0,V).
Due to the semantics of the set minus n, the unenforceable or-

ders have two components: gUnimpl and gUnspec . Interestingly, the two
components have different semantics: gUnimpl represents orders that
are enforced in the scenario specification, but that cannot be en-
forced in the implementation model, and gUnspec represents orders
that should not be enforced, but that are held in the implementa-
tion model. Therefore, when we interpret the unenforceable or-
ders, such a difference should be considered.

Now, we describe the unenforceable orders detected in the
example shown in Fig. 6. Fig. 13 shows the transitive reductions
of the specification and implementation order graphs shown in
Figs. 8 and 10. Since the example is small, in Fig. 13, we can easily
figure out differences between them; the bold solid lines represent
gUnspec and the bold dashed lines are gUnimpl. Overlapping the unen-
forceable orders with the given scenario specification helps to eas-
ily understand them. Fig. 14 shows such an overlapped view.
According to the semantics of gUnspec and gUnimpl, we can interpret
Fig. 14 as follows: (1) ‘‘Delivery Dpt.’’ may receive a message ‘‘deliv-

eryOrder’’ before the message ‘‘product’’ arrives even though the sce-
nario specification enforces that the message ‘‘deliveryOrder’’ is
received after receiving the message ‘‘product’’. (2) Although the
execution flow branches out of the ‘‘sd deliveryA’’ scenario, ‘‘Delivery

Dpt.’’ may send the ‘‘deliveryB’’ message. (3) Although the execution
flow branches out of the ‘‘sd deliveryB’’ scenario, ‘‘Delivery Dpt.’’
may send the ‘‘deliveryA’’ message.

5.2. Algorithms

In this section, we provide algorithms for detecting unenforce-
able orders and analyze their complexity. Through the complexity,
we want to show that our approach can be applied in the large-
scale scenario specification and is more efficient than detecting
the implied scenarios. According to the definition of the unenforce-
able orders, we first describe algorithms for creating a specification
       d deliveryB
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order graph and an implementation order graph. Then, the proce-
dure for differentiating those two graphs will be shown.

Procedure 1 shows an algorithm for creating a specification or-
der graph. The procedure firstly removes control nodes from a
bIOD: line 2. Then, it creates a specification order graph for each
bSD: lines 5–16. At last, those specified properties of bSDs are
asynchronously concatenated: lines 17–21. In the procedure, there
are four undefined procedures: ‘‘removeControlNodes’’, ‘‘remove-
Tau’’, ‘‘mins’’, and ‘‘ maxs’’. ‘‘removeControlNodes’’ and ‘‘remove-
Tau’’ procedures remove control nodes of a bIOD and s from a
specification order graph, respectively. By modifying the transitive
closure algorithm [17], we can easily implement them with worst-
case complexity OðjVI j3Þ and O(jVspecj3), respectively. The ‘‘mins’’
and ‘‘maxs’’ procedures return the first and last vertices of a given
causal order graph if there is a vertex, respectively. Otherwise, they
return s. Note that, without the s, the asynchronous concatenation
operator cannot be run, correctly. For example, if bSDs A,B, and C
should be concatenated, and if the B does not have an event for life-
line l, a last event on l in A is not concatenated with a first event on l
in C without s.

Procedure 1. [createSpecificationOrderGraph]

Require: U: UML scenario specification

1:
 ðB; I ; ref Þ  U

2:
 ðEI ;VI Þ  removeControlNodes(I)

3:
 Espec ;

4:
 Vspec ;

5:
 for all v 2 VI do

6:
 (Ob,Mb,Lb,locb, < b) ref(v)

7:
 for all l 2 Lb do

8:
 for all (b,e) 2 < bjl do

9:
 Espec Espec [ {(b,e)}

10:
 end for

11:
 end for

12:
 for all (s,r) 2Mb do

13:
 Espec Espec [ {(s,r)}

14:
 end for

15:
 Vspec Vspec [ Ob
16:
 end for

17:
 for all ðv1;v2Þ 2 EI s.t.

ref(v1) = (O1,M1,L1,loc1, < 1),ref(v2) = (O2,M2,L2,loc2, < 2) do

18:
 for all l 2 L1 [ L2 do

19:
 Espec Espec [ {(maxs(<1jl),mins(<2jl))}

20:
 end for

21:
 end for

22:
 return (removeTau(Espec), Vspec)
With appropriate data structures, the complexity of Procedure 1
is bound to OðjVI jjLbjj<bjlj þ jEI jjL1 [ L2j þ jVI j3 þ jVspecj3Þ: the first
and second terms correspond to the first for all (lines 5–16) and
second for all (lines 17–21), respectively, and the third and fourth
terms correspond to ‘‘removeControlNodes’’ and ‘‘removeTau’’,
respectively. Roughly, the complexity of Procedure 1 is abstracted
to O(jVspecj3).
Procedure 2. [prepareHistory]

Require: (Espec,Vspec): Specification order graph

1:
 h empty history function

2:
 for all v 2 Vspec do

3:
 h(v) (;, lbl(v))

4:
 end for
5:
 for all l 2 Ltotal do

6:
 for all (v1,v2) 2 Espec do

7:
 if v1 and v2 is on l, and v2 is receiving event then

8:
 (H, lb) h(v2)

9:
 h(v2) (H [ {h(v1)},lb)

10:
 end if

11:
 end for

12:
 end for

13:
 return h
Procedure 2 returns a history function, which returns states of
each vertex of the specification order graph. This procedure is
needed to obtain the permutating orders.

It begins by setting a history function of each vertex to an
empty set: lines 2–4. Then, for each lifeline l and each edge
(v1,v2), if a vertex v1 is a predecessor of v2 on the same life-
line l, then v1’s history is added to the history of v2: lines 5–
12.

The complexity of Procedure 2 is roughly bound to O(jVspecj2)
because jLtotalj 6 jVspecj and jEspecj 6 jVspecj.

Procedure 3. [firstReactEvent]

Require: v: a vertex of a bIOD, l: a lifeline, V: a set of visited
vertices
1:
 r empty set

2:
 if v R V then

3:
 V V [ {v}

4:
 if v is not a control node and ref(v) has an event on the

lifeline l then

5:
 (Ob,Mb,Lb, locb, < b) ref(v)

6:
 if min(<bjl) is a sending event then

7:
 r r [ {min(<bjl)}

8:
 end if

9:
 else

10:
 for all v02 a set of next nodes of v do

11:
 r r [ firstReactEvent(v0,l)

12:
 end for

13:
 end if

14:
 end if

15:
 return r
Procedure 3 is a helper procedure for detecting non-local choice
orders. It returns a first event for the given lifeline after the given
vertex, and is bound to O(jVIj + jEIj) since it is a kind of a Depth First
Search (DFS) algorithm.
Procedure 4. [detectNonLocalChoiceOrder]

Require: U: UML scenario specification, Eimpl: Set of edges of
implementation order graph
1:
 ðB; I ; ref Þ  U

2:
 ðEI ;VI Þ  I

3:
 Ltotal union of all lifelines in B

4:
 DI  a set of decision vertices in VI

5:
 for all v 2 DI do

6:
 S empty set

7:
 for all l 2 Ltotal do

8:
 Sl empty set

9:
 Nv a set of next nodes of v

10:
 for all v0 2 Nv do

11:
 e firstReactEvent(v0,l)
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12:
2 jSj þ j
spec j2.
Sl Sl [ e

13:
 for all s 2 S do

14:
 Eimpl Eimpl [ {(s,e)}

15:
 Eimpl Eimpl [ {(e,s)}

16:
 end for

17:
 end for

18:
 S S [ Sl
19:
 end for

20:
 end for

21:
 return Eimpl
Procedure 4 is a procedure for creating the non-local choice or-
ders. For each decision node and each lifeline, it finds a first send-
ing event through Procedure 3. Then, edges between every pair of
the events is added to the implementation order graph, except in
the case in which a pair of events is on the same lifeline or in
the same bSD.

The complexity of Procedure 4 is bound to OðjDI jjLtotaljjNv jðjSjþ
jEI j þ jVI jÞÞ, and O(jVspecj3) can be roughly used as a concise form of
the complexity.2

Procedure 5. [createImplementationOrderGraph]

Require: U: UML scenario specification,
(Espec,Vspec):specification order graph
1:
 Eimpl ;

2:
 for all (v1,v2) 2 Espec do

3:
 if v2 is a sending event or (v1,v2) is originated from a

message then

4:
 Eimpl Eimpl [ {(v1,v2)}

5:
 end if

6:
 end for

7:
 h prepareHistory(gspec)

8:
 for all v1 2 Vspec do

9:
 for all v2 2 Vspec do

10:
 if h(v1) = h(v2) and v1 – v2 then

11:
 for all v3 2 Vspec and (v2,v3) 2 Espec do

12:
 if v3 and v2 is on the same lifeline then

13:
 Eimpl Eimpl [ {(v1,v3)}

14:
 end if

15:
 end for

16:
 end if

17:
 end for

18:
 end for

19:
 Eimpl detectNonLocalChoiceOrder(U; Eimpl)

20:
 Eimpl
Procedure 5 presents an algorithm for creating the implementa-
tion order graph. First, in lines 2–6, the uncertain orders are re-
moved from the specification order graph. Before adding the
permutating orders, the procedure prepares the history function
using Procedure 2. Then, in lines 8–18, the permutating orders
are added to the implementation order graph: for every pair of dis-
tinct events v1 and v2, if they have the same history, edges between
them their very next events are inserted. Note that we do not need
to return Vimpl like Procedure 1 because Vimpl is the same with Vspec.
The complexity of Procedure 5 is clearly O(jVspecj3).
EI j þ jVI j 6 ajVspec j and jDI jjNv jjLtotal j6 jEI jjLtotalj6 jVI j2jLtotal j6 jVI jjVspec j6
Procedure 6. [detectUnenforceableOrders]

Require: U:UML 2.0 scenario specification

1:
 (Espec,Vspec) createSpecificationOrderGraph(U)

2:
 Eimpl createImplementationOrderGraph((Espec,Vspec))

3:
 Eþspec  transitiveClosure(Espec)

4:
 Eþimpl  transitiveClosure(Eimpl)

5:
 E�spec  transitiveReduction(E�spec)

6:
 E�impl  transitiveReduction(E�impl)

7:
 Enspec ;,Vnspec ;,Enimpl ;,Vnimpl ;

8:
 for all ðe; e0Þ 2 E�impl do

9:
 if ðe; e0Þ R E�spec then

10:
 Enspec Enspec [ {(e,e0)}

11:
 Vnspec Vnspec [ {e,e0}

12:
 end if

13:
 end for

14:
 for all ðe; e0Þ 2 E�spec do

15:
 if ðe; e0Þ R E�impl then

16:
 Enimpl Enimpl [ {(e,e0)}

17:
 Vnimpl Vnimpl [ {e,e0}

18:
 end if

19:
 end for

20:
 (Enspec,Vnspec), (Enimpl,Vnimpl)
Finally, our main algorithm is described in Procedure 6. First of
all, the specification order graph and implementation order graph
are created by Procedures 1 and 5. Then, their transitive closures
and transitive reductions are calculated. Finally, their differences
are calculated in lines 8–19.

The complexity of Procedures 1 and 5 is roughly O(jVspecj3), and
the transitive closure and transitive reduction also have O(jVspecj3)
complexity using Warshall’s algorithm [17]. Therefore, the com-
plexity of our whole approach is bound to O(jVspecj3). This complex-
ity is relatively acceptable for the large-scale scenario specification
because it is polynomial.

Now, let’s compare our approach with the prior approaches that
detect the implied scenarios. As we mentioned previously, such
works synthesize an automata-based model, which is created by
parallel compositions between local automata that represent life-
lines’ behaviors. According to [1], under the asynchronous commu-
nication style, the realizability check for scenarios with loops is
undecidable if sizes of queues, that used to store received messages
between agents, are not bound. Even though the queue sizes are
bound, the state space of such approaches is still exponential to
the size of queues under the asynchronous communication style [1].

The synchronous communication is a special case that the size
of queue is zero: the number of states of the synthesized automa-
ton is given as jQ1j. . .jQnj where Q1,. . .,Qn are states of local auto-
mata. In worst case, the events are equally distributed to each
local automaton: Qi = jVspecj/n and i = 1. . .n where Vspec is a set of
events. Therefore, the space complexity of the synthesized autom-
aton is OððjVspec j

n Þ
nÞ. When n is 2, previous approaches show better

performance than ours, while, when n is larger than 3, our ap-
proach shows better performance than others.

Therefore, we can argue that, in case of large scenarios, our ap-
proach is generally more efficient than prior approaches that de-
tect the implied scenarios, especially under the asynchronous
communication style.

6. Supporting other communication styles

In Section 5, we explained the detection of unenforceable orders
under the asynchronous communication style.
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The asynchronous communication style enforces only the or-
ders between the sending event and their corresponding receiving
event for messages, which are already included in the specification
order graph and implementation order graph. However, in other
communication styles, more orders are enforced. Hence, to support
the other communication styles, the specification order graph and
implementation order graph should have additional orders to re-
flect their characteristics. In this subsection, we describe such addi-
tional orders for supporting the following communication styles.

FIFO communication. A message sender does not wait for the
arrival of the message at the receiver. A message sent first is
received first.
Synchronous communication. A message sender waits until
the message arrives at the receiver.

In the FIFO communication style, messages are received in the
order in which the messages are sent. In Fig. 15, the message ‘‘ques-

tionnaire’’ is sent from the object ‘‘Producer’’ to the object ‘‘Consumer’’
before the message ‘‘advertise’’. Under the FIFO communication
style, the message ‘‘questionnaire’’ always arrives before the mes-
sage ‘‘advertise’’. Thus, the order between the receiving events of
the messages ‘‘questionnaire’’ and ‘‘advertise’’ is conserved, although
the order is the uncertain order. To reflect such conservation, the
implementation order graph should have additional orders be-
tween the receiving events, in a lifeline, corresponding to the send-
ing events that have orders between them. We refer to such orders
as the FIFO orders. The FIFO orders are already included in the spec-
ification order graph. Thus, under the FIFO communication style,
they are only added to the implementation order graph. Their def-
inition is as follows:

Definition 13. Let x and y be receiving events such that
loc(x) = loc(y), and (x,y) 2 E for a specification order graph
gUspec ¼ ðE;VÞ. Likewise, let x0 and y0 be sending events of messages
whose receiving events are x and y, respectively. If loc(x0) = loc(y0),
then the order ‘‘x to y’’ is the FIFO order.

Figs. 16 and 17 present the specification order graph, imple-
mentation order graph, and unenforceable orders for the bSD
shown in Fig. 15 under asynchronous communication style and
FIFO communication style, respectively. According to the above
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definition, in Fig. 17, the order ‘‘r1 to r3’’ is the FIFO order. There-
fore, in Fig. 17b, the order ‘‘ r1 to r3’’ is included in the implemen-
tation order graph. Under asynchronous communication style, the
order ‘‘r1 to r3’’ is an unenforceable order. However, under FIFO
communication style, it does not cause implied scenarios due to
the FIFO orders as shown in Fig. 17c.

Now, we explain the additional orders for synchronous commu-
nication. In synchronous communication, after an object sends a
message, the object waits until the message is received by another
object. This means that no event can occur in the object before the
receiving event of the message. Thus, for each message, the speci-
fication order graph and implementation order graph should have
an order enforcing that the receiving event occur before any subse-
quent events. Those orders are referred to as synchronous orders.
They are formally defined as follows:

Definition 14. Let x and y be the sending event and receiving event
of a message, respectively. Also, let z be the very next sending
event of x in the lifeline of x. Then, the order ‘‘y to z’’ is the
synchronous order.

Fig. 18 shows the specification order graph and implementation
order graph under the synchronous communication style. In
Fig. 15, after sending the message ‘‘questionnaire’’, the object ‘‘Pro-

ducer’’ waits until the receiving event r1 arises. In other words,
the event s2 always arises after the event r1. To reflect such charac-
teristics, the specification order graph and implementation order
graph should have the order ‘‘r1 to s2’’, the synchronous order. Sim-
ilarly, the order ‘‘r2 to s3’’ should also be added. Due to the synchro-
nous orders, the bSD, shown in Fig. 15, does not have any
unenforceable orders under synchronous communication style.

7. Case study

In this section, we present two case studies for scenario specifi-
cations on a boiler control system and mobility management in a
Global Systems for Mobile communications (GSM) network. The
purpose of the former case study is to show the usefulness of
identifying the unenforceable orders in dealing with the implied
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scenarios, and to show that our approach provides more fine-
grained detection than recent approaches. Through the latter case
study, we show the importance in considering various communica-
tion styles and the performance of our algorithm. These case
studies were carried out on a computer with the following specifi-
cations: Intel(R) Quad Core 3 Ghz, 4GB with Windows 7 64bit. Our
tool is implemented as an Eclipse plug-in and it uses the Eclipse
UML plug-in. There are pure Java and Java Native Interface (JNI)
versions, but, in these case studies, we use only the pure Java ver-
sion. The implementation and results of the case studies can be
downloaded from http://se.kaist.ac.kr/.

7.1. Boiler control system

We borrowed a scenario specification of a boiler control system
from [9,15]. The scenario specification in [9,15] is described with
the MSC. We converted it into a form of UML scenario specification.
This example originally consists of four MSCs and an hMSC with 14
events. The application of our loop unrolling produces 12 MSCs and
an hMSC, with 34 events in them. The seven unenforceable orders
are detected under the synchronous communication style, as
shown in Fig. 19.

In Fig. 19, the detected unenforceable orders are shown as lines:
the dashed lines denote gnimpl that represents orders which are en-
forced in the scenario specification but cannot be enforced in the
implementation model, while the solid lines denote gnspec that rep-
resents orders which should not be enforced, but are held in the
implementation model. The parenthesized number beside each
unenforceable order is its identifier. Each circle represents an event
whose label consists of the name of a lifeline holding the event, the
type of event, and the name of a message related to the message,
from the first line.

To get an intuitive viewpoint, we overlay those unenforceable
orders on the scenario specification [15,9], as shown in Fig. 20.
According to the semantics of gnimpl and gnspec, each of the unen-
forceable orders in Fig. 20 is interpreted as follows:

Unenforceable order. (1) The scenario specification enforces that
the ‘‘Database’’ receives the message ‘‘pressure’’ after sending of
the message ‘‘data’’. However, the message ‘‘pressure’’ may arrive
before the sending. The ‘‘Sensor’’ does not know about the inter-
nal state of the ‘‘Database’’, so the ‘‘Sensor’’ may send the mes-
sage ‘‘pressure’’ before sending the message ‘‘data’’.
Unenforceable order. (2) The scenario specification enforces that
the ‘‘Database’’ receives the message ‘‘query’’ after receiving the
message ‘‘pressure’’. However, the message ‘‘query’’ may arrive
before the reception of the message ‘‘pressure’’. The ‘‘Sensor’’
and ‘‘Control’’ do not know about each other’s internal state,
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Fig. 19. Unenforceable orders in the boiler control system under synchronous
communication style.
so the ‘‘Control’’ may send the message ‘‘query’’ before ‘‘Sensor’’
sends the message ‘‘pressure’’.
Unenforceable orders. (3), (4) The scenario specification enforces
that the sending events for the message ‘‘off’’ and ‘‘pressure’’
should not occur concurrently. However, after the decision
node ‘‘d’’, those events may simultaneously occur.3At the deci-
sion node ‘‘d’’, the ‘‘Sensor’’ and ‘‘Control’’ independently make a
decision, so that the ‘‘Sensor’’ may proceed to ‘‘sdSensorSendsData’’,
while the ‘‘Control’’ may proceed to ‘‘sdTurnSensorOff’’. Then, they
may make send the messages ‘‘pressure’’ and ‘‘off’’ concurrently.
Unenforceable orders. (5), (6) The scenario specification enforces
that the sending events for the message ‘‘query’’ and ‘‘pressure’’
should not occur concurrently. However, after the decision
node ‘‘d’’, those events may simultaneously occur.3
At the decision node ‘‘d’’, the ‘‘Sensor’’ and ‘‘Control’’ indepen-
dently make a decision, so that the ‘‘Sensor’’ may proceed to
‘‘sd SensorSendsData’’ while the ‘‘Control’’ may proceed to ‘‘sd
CommandActuator’’. Then they may send the messages ‘‘pressure’’
and ‘‘query’’ concurrently.
Unenforceable order. (7) The scenario specification enforces that
the ‘‘Sensor’’ receives the message ‘‘off’’ after sending the mes-
sage ‘‘pressure’’. However, the message ‘‘off’’ may arrive before
sending the message ‘‘pressure’’. The ‘‘Control’’ does not know
about the internal state of the ‘‘Sensor’’, so the ‘‘Control’’ may
send the message ‘‘off’’ before sending the message ‘‘pressure’’.

For the comparative case study, we choose Letier et al.’s work
[9] since only the work covered the input–output implied scenar-
ios among the related works. However, there were no its concrete
and full implementations. Thus, we manually made LTSs according
to their approach and used Labeled Transition System Analyzer
(LTSA) [14] for calculating the implied scenarios. The LTSs used
for this case study can be downloaded in http://se.kaist.ac.kr/.

Fig. 21 shows the detected implied scenarios and corresponding
unenforceable orders which are detected by our approach. All de-
tected implied scenarios correspond to a subset of the unenforce-
able orders. Therefore, we can argue that our approach is
consistent with previous approaches.

As shown in Fig. 21, the implied scenario is just an error trace.
Such error traces do not identify which part of the scenario speci-
fication leads to the implied scenarios. Thus, using existing ap-
proaches, the designer who wants to treat the implied scenarios
should compare the implied scenarios with the scenario specifica-
tion. On the other hand, in our approach, the unenforceable orders
reveal where the problems exist and what events are relevant to
the problems, as shown in Fig. 20. For example, through the unen-
forceable order (2) in Fig. 21, a designer can focus on devising a
means to coordinate the receiving events of the message ‘‘pressure’’
and ‘‘query’’ without analysis of the implied scenario. Therefore, we
argue that identifying the causes of implied scenarios provides an
easier means for treating the implied scenarios than just providing
the implied scenarios, particularly in the large scenario
specification.

Interestingly, the unenforceable orders (1) and (5) in Fig. 21 are
related to one implied scenario. In this case, both of them should be
coordinated in order to remove the implied scenario. Therefore,
without the unenforceable orders, handling the implied scenarios
may become harder.

Fig. 22 shows the implied scenarios that are not detected by
Letier et al.’s work, but that are detected by our approach.4 They
3 Note that each pair of the unenforceable orders ‘‘(3) and (4)’’ and ‘‘(5) and (6)’’
make a cycle. This means that events in the cycle may occur simultaneously.

4 In fact, our approach only detect the unenforceable orders. However, we can drive
the implied scenarios from the specification order graph and the unenforceable
orders.

http://se.kaist.ac.kr/
http://se.kaist.ac.kr/
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assume the synchrony hypothesis between the sending and receiv-
ing events of a message, while we do not. Through the difference,
our approach can detect more implied scenarios.

It is worth noting that some of the detected implied scenarios in
Fig. 22 do not seem to be the implied scenarios(second and third
ones). For example, if the boiler control system proceed along se-
quences of bSDs ‘‘sd TurnSensorOn’’, ‘‘sd SensorSendsData’’, ‘‘sd
SensorSendsData’’, and ‘‘sd TurnSensorOff’’, the second implied sce-
nario is explicitly presented in the scenario specification. However,
the detected unenforceable order (4) explains another case. On the
decision node ‘‘d’’, the ‘‘Sensor’’ can choose the path to the bSD ‘‘sd
SensorSendsData’’, while the ‘‘Control’’ can take a path to the bSD ‘‘sd
TurnSensorOff’’. Then, the bSD ‘‘sd TurnSensorOff’’ and ‘‘sd Sensor-

SendsData’’ are concurrently executed. The first and second implied
scenarios in Fig. 22 represent this phenomenon, and they are def-
initely undesired scenarios.

7.2. Mobility management in a GSM network

We borrowed a scenario specification describing mobility man-
agement in a GSM network from [10]. The specification consists of
14 MSCs and an hMSC that combines the MSCs. It has 128 events
and four lifelines. After the loop unrolling, we obtained 84 MSCs
and an hMSC with 420 events. Since this specification has five
loops, and because four loops of them are nested, many duplica-
tions of MSCs occur.

This scenario specification has 55 unenforceable orders with the
asynchronous communication style. Under the FIFO communica-
tion style and synchronous communication style, 42 and 32 unen-
forceable orders are detected, respectively. These results let us
know that the communication style significantly affects the im-
plied scenarios. Thus, to guarantee the absence of the implied sce-
narios, the appropriate communication style should be considered.

Fig. 23 shows one of the unenforceable orders detected from the
scenario specification under the asynchronous and FIFO communi-
cation style. The bold line denotes a detected unenforceable order.
It describes that the receiving event of the message ‘‘CON-

NECT_ACK’’ can arise after the receiving event of the message
‘‘DISC’’. In the synchronous communication style, the object ‘‘MS’’
waits until the message ‘‘CONNECT_ACK’’ arrives at the object
‘‘MSC’’. After the arrival, the messages ‘‘DISCON’’ and ‘‘DISC’’ can
be sent. Therefore, under the synchronous communication style,
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5 Uchitel et al.’s work [15] implementation interestingly shows faster performance
in the larger case study. According to [16], their synthesis technique is more sensitive
for the number of lifelines and bSDs than the number of events.

6 A case that no non-local choice occurs.
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the detected unenforceable order does not lead to the implied sce-
narios. However, in the asynchronous or FIFO communication
style, the order causes the implied scenarios since each object does
not wait until the arrival of the messages. From this example, we
know that the communication style should be considered for
detection of the correct unenforceable orders.

As a justification for the complexity of our approach, for these
two case studies, we analyzed the relationship between the time
elapsed to detect the unenforceable orders and the number of
events. Since we use the loop-unrolling technique, we also ana-
lyzed the number of events after the loop unrolling. Table 1 shows
the ratios of the number of events to the elapsed time. The elapsed
time was measured under the synchronous communication style,
which introduces a larger set of edges to the specification and
implementation order graph than other communication styles.

As we mentioned in Section 5.2, our algorithm is bound to
O(jVUj3) in the worst case, where VU is a set of events after the loop
unrolling. However, in these case studies, the elapsed time was
more likely to be proportional to the jVj2 or jVUj2 than jVj3 or jVUj3.
From this result, we can conclude that the complexity of our imple-
mentation is roughly bound to jVUj3 in the worst case, but the
implementation may show better performance. In addition, Table
1 demonstrates that the loop unrolling does not hamper the per-
formance of our implementation, significantly.

In comparing with Uchitel et al.’s work [15], for the two case
studies, their implementation shows 562 ms and 523 ms for the
boiler control system and mobility management in a GSM network,
respectively. In both of the case studies, our implementation shows
better performance.5

7.3. Discussion

Throughout the two case studies, we demonstrated the advan-
tages of our approach. Comparing with the previous approaches,
(1) our approach identifies the causes of implied scenarios by the
unenforceable orders, (2) detects more implied scenarios, (3) and
is applicable to the asynchronous or FIFO communication styles.

In general, detecting the implied scenarios helps to elaborate a
scenario specification that does not lead miss communication be-
tween stakeholders related to the scenario specification. Therefore,
the first and second advantages may help to reduce miss-commu-
nication. Moreover, since our approach supports the asynchronous
and FIFO communication styles, it is applicable to the choreogra-
phy model in Business Process Modeling Notation (BPMN) 2.0 or
WS-Choreography, which are based on the asynchronous or FIFO
communication.

However, during the case studies, we also found two draw-
backs. First, while the complexity of our main algorithm is bound
to O(jVj3), the loop unrolling increases jVj, where jVj means the
number of events. In Table 1, our second case study has 420 events
although it originally has 128 events. As we mentioned Section 4,
our loop unrolling technique may duplicate the events: deeper
nested loop may cause more duplication. To minimize such dupli-
cation, we are now working on devising new loop unrolling
technique.

The other is that, in some cases, the unenforceable orders may
be hard to be understood. For example, in Fig. 22, the second and
third orders do not seem to be the unenforceable orders, because
‘‘sdTurnSensorOff’’ is a successor of ‘‘sd SensorSendsData’’. Therefore,
when every lifeline proceeds from ‘‘sd SensorSendsData’’ to ‘‘sd Turn-

SensorOff’’ 6, the detected orders are not unenforceable orders. On



Table 1
Ratios between the elapsed time and the number of events.

Elapsed time (ms) jVja jVUjb jVj2 jVUj2 jVj3 jVUj3

GSM 328.00 128.00 420.00 16384.00 176400.00 2097152.00 74088000.00
Boiler 3.00 14.00 34.00 196.00 1156.00 2744.00 39,304.00
Ratio (GSM/Boiler) 109.33 9.14 12.35 83.59 152.60 764.27 1885.00

a jVj is the number of events.
b jVUj is the number of events after the loop unrolling.
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the other hand, as we previously mentioned, a non-local choice may
occur on the decision vertex ‘‘d’’. When the non-local choice occurs
on the decision vertex ‘‘d’’, the sending event of ‘‘pressure’’ and receiv-
ing event of ‘‘off’’ can occur simultaneously. The unenforceable or-
ders (3) and (4) in Fig. 20 represent such a case. To help the
interpretation, we are now considering to provide the context infor-
mation, that represents a situation which make the orders unen-
forceable, to users. Such context information may help that the
users can understand why the detected orders are unenforceable,
and, furthermore, may enable the automatic treatment of the unen-
forceable orders.
8. Conclusion and future work

In this paper, we have presented an approach to detecting the
unenforceable orders in order to identify the causes of implied
scenarios. The UML scenario specification enforces relative orders
between events. Among those orders, some may not be inher-
ently enforced. Such orders are the unenforceable orders.
According to the definition, the unenforceable orders cause the
implied scenarios. To detect the unenforceable orders, our ap-
proach first creates the specification order graph and implemen-
tation order graph that stand for the scenario specification and
implementation model. Then, through the differences between
them, the unenforceable orders are obtained. We provide the
pseudo-codes for our approach and analyze their complexity.
Two case studies are presented to validate our approach. With
the case studies, we show that the unenforceable orders not only
help to efficiently handle the implied scenarios, but also detect
more implied scenarios than other approaches. Furthermore,
the case studies convey the importance of consideration of the
various communication styles, as well as present the perfor-
mance of our implementation.

The advantages of our approach is summarized in three points.
First, the unenforceable orders can identify which part should be
considered to handle the implied scenarios. The implied scenarios
are the differences between behaviors of the scenario specification
and implementation model. Previous approaches use a model-
checking technique to compare them. However, since the model-
checking technique returns error traces when there are errors,
the approaches only figure out results as a form of error traces
which are referred to as the implied scenarios. To use the model-
checking technique, an automata-based implementation model
should be synthesized. Through the synthesis, the traceability be-
tween the specification and the implementation model is lost. On
the other hand, our approach compares the specification order
graph and the implementation order graph. Since the two graphs
have the same events as the scenario specification, differences be-
tween them indicate which part leads to the implied scenarios: the
differences are the unenforceable orders. Second, our approach
provides more fine-grained detection than previous works. Unlike
previous approaches, we do not assume the synchrony hypothesis
between the sending and receiving events of a message. Our ap-
proach separately uses the sending and receiving events. This al-
lows our approach to detect more implied scenarios. Third, due
to the nature of the causal order graph, our approach efficiently
supports the asynchronous communication style. Based on the
asynchronous communication style, we provide the technique to
support various communication styles. In addition, our algorithm
is relatively efficient so that we can use our approach in large-scale
scenario specification.

Additional work is expected to mature our approach. First, an
optimized algorithm for the loop unrolling should be devised.
Although we devised several optimization techniques, we expect
that more optimization can be performed. Second, using the unen-
forceable orders, we will work further on devising a method for
automated treatment of the implied scenarios.
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