
Information and Software Technology 55 (2013) 966–985
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Dynamic profiling-based approach to identifying cost-effective refactorings

Ah-Rim Han ⇑, Doo-Hwan Bae
Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
a r t i c l e i n f o

Article history:
Received 18 April 2012
Received in revised form 6 December 2012
Accepted 7 December 2012
Available online 20 December 2012

Keywords:
Cost-effective refactoring
Refactoring identification
Dynamic profiling
Dynamic method call
Maintainability improvement
Refactoring cost
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.12.002

⇑ Corresponding author. Tel.: +82 42 350 7739; fax
E-mail addresses: arhan@se.kaist.ac.kr (A.-R. Han), b
a b s t r a c t

Context: Object-oriented software undergoes continuous changes—changes often made without consid-
eration of the software’s overall structure and design rationale. Hence, over time, the design quality of the
software degrades causing software aging or software decay. Refactoring offers a means of restructuring
software design to improve maintainability. In practice, efforts to invest in refactoring are restricted;
therefore, the problem calls for a method for identifying cost-effective refactorings that efficiently
improve maintainability. Cost-effectiveness of applied refactorings can be explained as maintainability
improvement over invested refactoring effort (cost). For the system, the more cost-effective refactorings
are applied, the greater maintainability would be improved. There have been several studies of support-
ing the arguments that changes are more prone to occur in the pieces of codes more frequently utilized by
users; hence, applying refactorings in these parts would fast improve maintainability of software. For this
reason, dynamic information is needed for identifying the entities involved in given scenarios/functions
of a system, and within these entities, refactoring candidates need to be extracted.
Objective: This paper provides an automated approach to identifying cost-effective refactorings using
dynamic information in object-oriented software.
Method: To perform cost-effective refactoring, refactoring candidates are extracted in a way that reduces
dependencies; these are referred to as the dynamic information. The dynamic profiling technique is used
to obtain the dependencies of entities based on dynamic method calls. Based on those dynamic depen-
dencies, refactoring-candidate extraction rules are defined, and a maintainability evaluation function is
established. Then, refactoring candidates are extracted and assessed using the defined rules and the eval-
uation function, respectively. The best refactoring (i.e., that which most improves maintainability) is
selected from among refactoring candidates, then refactoring candidate extraction and assessment are
re-performed to select the next refactoring, and the refactoring identification process is iterated until
no more refactoring candidates for improving maintainability are found.
Results: We evaluate our proposed approach in three open-source projects. The first results show that
dynamic information is helpful in identifying cost-effective refactorings that fast improve maintainabil-
ity; and, considering dynamic information in addition to static information provides even more opportu-
nities to identify cost-effective refactorings. The second results show that dynamic information is helpful
in extracting refactoring candidates in the classes where real changes had occurred; in addition, the
results also offer the promising support for the contention that using dynamic information helps to
extracting refactoring candidates from highly-ranked frequently changed classes.
Conclusion: Our proposed approach helps to identify cost-effective refactorings and supports an auto-
mated refactoring identification process.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Object-oriented software undergoes continuous changes with
various maintenance activities such as the addition of new func-
tionalities, correction of bugs, and adaptation to new environ-
ments. Since the changes often take place without consideration
of the software’s overall structure and design rationale due to time
ll rights reserved.

: +82 42 350 8488.
ae@se.kaist.ac.kr (D.-H. Bae).
constraints, the design quality of the software may degrade over-
time. This phenomenon is known as software aging [1] or software
decay [2]. Thus, refactoring can serve to restructure the design of
object-oriented software without altering its external behavior
[2] to improve maintainability, which in turn reduces maintenance
costs and shortens time-to-market.

Given time, resource, or budget limitations for doing refactor-
ing, a method for identifying cost-effective refactorings is needed.
Cost-effectiveness of applied refactorings can be explained as
maintainability improvement over invested refactoring effort

http://dx.doi.org/10.1016/j.infsof.2012.12.002
mailto:arhan@se.kaist.ac.kr
mailto:bae@se.kaist.ac.kr
http://dx.doi.org/10.1016/j.infsof.2012.12.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 967
(cost). Therefore, it can be said that refactoring X is more cost-
effective than refactoring Y, when maintainability improvement
in relation to the invested effort of applying refactoring X is larger
than that of applying refactoring Y. By using cost-effective refactor-
ings, the less effort of applying refactorings is required to accom-
plish the same maintainability improvement. In our approach,
we aim for making software accommodate changes more easily
by performing cost-effective refactorings.

Previous studies have shown that the data capturing how the
system is utilized is an important factor for estimating changes.
Robbes et al. [3] show that using program usage data recorded
from Integrated Development Environments (IDEs) significantly
improves the overall accuracy of change prediction approaches.
The experimental results of the other studies [4,5] show that
dynamic coupling measures and behavioral dependency mea-
sures—that are obtainable during run-time execution and pinpoint
the systems’ parts that are often used—are good indicators for pre-
dicting change-prone classes. Being motivated by these works,
which aimed to perform cost-effective refactoring, we have come
to argue that if changes are more prone to occur in the pieces of
codes that users more often utilize, then applying refactorings in
these parts would fast improve maintainability of software. The
underlying assumption is that the pieces of codes that have been
used more are more likely to undergo changes in a future version;
therefore, investing efforts on the refactorings involving such codes
may effectively improve maintainability. For this reason, to iden-
tify the cost-effective refactorings, the entities are identified based
on the dynamic information of how the users utilize the software
(e.g., user scenario and operational profile [6]); and within these
entities, refactoring candidates need to be extracted. By using only
static information (i.e., that can be obtained by analyzing source
codes statically without running a program) such as structural
complexity of the program, refactorings may be suggested on
rarely, or, even worse, never-used entities. If changes have never
occurred in such entities, then the benefit—for example, reduced
maintenance cost for accommodating the changes—of the applica-
tion of those refactorings may be little to none; in this case, refact-
orings need to be applied on the other entities.

In this paper, we provide an automated approach to identifying
cost-effective refactorings using dynamic information in object-
oriented software. Refactoring candidates are extracted with the
aim of reducing dependencies of entities of methods and classes,
since the goal of the refactoring in our approach is to make soft-
ware accommodate changes more easily. We use the dynamic pro-
filing technique [7] to obtain the dependencies of entities based on
dynamic method calls by executing programs based on user sce-
narios or operational profiles. We define those dynamic dependen-
cies as DMCs, and in this paper, dynamic information indicates the
dynamic dependencies of entities (i.e., DMCs) that are obtained by
using the dynamic profiling. Based on the DMCs, (1) the rules for
reducing dependencies of entities are defined (for refactoring can-
didate extraction) and (2) the maintainability evaluation function
is established (for refactoring candidate assessment).

The brief procedure of the proposed systematic approach for
cost-effective refactoring identification is as follows. Refactoring
candidates are extracted using the refactoring candidate-extrac-
tion rules. Then, refactoring candidates are assessed using the
maintainability evaluation function. Those refactoring candidates
are sorted in the order of their expected degree of improvement
on maintainability, and the best refactoring—that most improves
maintainability—is selected in a greedy way and applied. Refactor-
ing-candidate extraction and assessment are re-performed to se-
lect the next refactoring, and the refactoring identification
process is iterated until no more refactoring candidates for improv-
ing maintainability are found. Finally, a sequence of refactorings is
generated by logging the results of refactoring selection.
The dynamic-profiling-based approach—refactoring identifica-
tion using dynamic information—has been evaluated on three
open-source projects: jEdit [8], Columba [9], and JGIT [10]. Two
tests are performed. The first test investigates the overall useful-
ness of the approach for the refactoring identification, while the
second test investigates the capability of the approach in extract-
ing refactoring candidates. For the first test, we evaluate whether
dynamic information is helpful in identifying cost-effective refact-
orings that fast improve maintainability. The method of change
simulation is used for assessing the capability of refactorings for
maintainability improvement using the reduced number of propa-
gated changes in regard to injected original changes. We compare
the results of change simulation to observe how quickly the num-
ber of propagated changes is reduced on the refactored models
whose applied refactorings are identified using the following three
comparison groups: (1) the approach using dynamic information
only, (2) the approach using static information only, and (3) the
combination of the two approaches. We use two indicators (the
percentage of reduction for propagated changes and the rate of
reduction for propagated changes) to show cost-effectiveness of
the identified refactorings. The results show that dynamic informa-
tion is helpful in identifying cost-effective refactorings that fast im-
prove maintainability; and, considering dynamic information in
addition to static information provides even more opportunities
to identify cost-effective refactorings. For the second test, we eval-
uate whether dynamic information is helpful in extracting refac-
toring candidates in the classes where real changes had
frequently occurred. We compare (a) the classes of top k% most fre-
quently changed during the development history with (b) the clas-
ses of refactoring candidates extracted from the approach using
dynamic information and the approach using static information,
respectively, to observe how many classes extracted as refactoring
candidates are found in real changed classes. The results show that
dynamic information is helpful in extracting refactoring candidates
in the classes where real changes had occurred. In addition, even
though the former approach is not always better than the latter ap-
proach, we find that the correlation does exist between the fre-
quently changed classes and the classes of refactoring candidates
extracted from the approach using dynamic information. The re-
sults offer promising support for using dynamic information for
extracting refactoring candidates from highly-ranked frequently
changed classes, and, further, that using dynamic information
can be a great help for cost-effective refactoring identification.

The rest of the paper is organized as follows. Section 2 contains
a discussion of related studies. Section 3 explains the basic
information and the overview of our proposed approach for cost-
effective refactoring identification. Section 4 explains the detailed
procedure and methods of refactoring candidate extraction, assess-
ment, and selection. Section 5 covers the implemented tool for
applying our proposed approach. In Section 6, we present the
experiment performed to evaluate the proposed approach and dis-
cuss the obtained results. Finally, we conclude and discuss future
research in Section 7.
2. Related work

Much of the existing research on automated refactoring focuses
on refactoring application [11–15], that is, applying refactorings on
actual source codes. Several studies have attempted to support
refactoring identification. For instance, to support each activity of
the refactoring process, (1) algorithms are developed to find refac-
toring candidates with the opportunities of applying design pat-
terns [16–18], removing code clones [19–21], and improving
code quality such as testability [22], as well as maintainability.
(2) For evaluating the design of the refactored code, design quality

968 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
evaluation models such as QMOOD [19] and Maintainability Index
(MI) [23], or a special metric such as historical volatility [24], are
used. Distance measures [25,26] or weighted sums of metrics
[27] also have been used as evaluation functions (i.e., fitness func-
tions); pareto optimality has been used to compare different fit-
ness functions and to combine results from different fitness
functions [28]. (3) The methods for scheduling of refactoring can-
didates also have been studied [29,30] to achieve the greatest ef-
fect of maintainability improvement. However, we still lack
systematic approaches, clear guides, and automated tool support
for identifying where to apply which refactorings and in what or-
der. In addition, research has yet to consider methods for identify-
ing cost-effective refactorings in terms of using dynamic
information. In the following, studies are presented in the catego-
ries of metric-based refactoring and search-based refactoring.

2.1. Metric-based refactoring

Several studies have attempted to support for identifying
refactorings using metrics as a means of detecting refactoring can-
didates or evaluating refactoring effects [31,25,32–34]. Tahvildari
and Kontogiannis [33] propose a metric-based method for detect-
ing design flaws and analyzing the impact of the chosen meta-
pattern transformations for improving maintainability. They detect
design flaws based on pre-defined quality design heuristics using
object-oriented metrics of complexity, coupling, and cohesion
metrics. However, the authors do not provide a systematic ap-
proach for applying given meta-pattern transformations; they offer
neither clear rules for detecting design flaws nor a method of how
to apply meta-pattern transformations. This process still requires
much human interpretation and judgment. Moreover, the effect
of certain given meta-pattern transformations are evaluated on ob-
ject-oriented metrics as positive and negative. Since a quantitative
method for evaluating the effect of meta-pattern transformations
is not available, the approach cannot determine a sequence to be
applied first among the multiple potential meta-pattern transfor-
mations. Du Bois et al. [31] provide a table representing the anal-
ysis of the impact of certain refactorings, which redistribute
responsibilities either within the class or between classes, on cohe-
sion and coupling metrics. In the manner of Tahvildari and Konto-
giannis [33], the authors specify the impact of refactorings as
ranges of best to worst cases as positive (i.e., improvement), nega-
tive (i.e., deterioration), and zero (i.e., neutral); it also lacks a
means of quantitative refactoring-effect evaluation, which is
essential for making a decision on which refactorings should be ap-
plied first. Simon et al. [25] provide a software-visualization ap-
proach using a distance-based cohesion metric to support
developers for choosing appropriate refactorings; the parts with
lower distances are cohesive whereas parts with higher distances
are less cohesive. However, decisions for which refactorings should
be performed and how to apply those refactorings are still heavily
dependent on developers, as the authors admit that they presume
that the developer is the last authority in identifying and applying
refactorings. In the above-mentioned studies, the metrics are ob-
tained using statically profiled information from source codes, in
other words, without executing a program, which might suggest
refactorings on parts of software that is not really in use. Further-
more, as pointed out above, they provide neither exact algorithms
guiding where to apply which refactorings nor a quantitative eval-
uation method, essential for selecting better refactoring.

Research has looked at providing a tool support and systematic
methodology to assist developers in making decisions as to where
to apply which refactoring. Tsantalis and Chatzigeorgiou [26] pro-
pose a methodology and constructed a tool for the identification of
Move Method refactoring opportunities that solve Feature Envy bad
smells. They extract a list of behavior-preserving refactorings
based on a distance-based measure that employs the notion of dis-
tance between system entities (i.e., methods and attributes) and
classes. This concept of distance for measuring lack-of-cohesion
is also used in [25]. The authors also defined an Entity Placement
metric, also based on the concept of distance and used as a means
of quantitative refactoring-effect evaluation. However, in their
experiment, they show the performance of refactoring opportuni-
ties by measuring the effect of refactored designs only on coupling
and cohesion metrics and some qualitative analysis.
2.2. Search-based refactoring

The literature has proposed methods of refactoring identifica-
tion by using several search techniques. O’Keeffe and Cinnéide
[35] treat object-oriented design as an optimization problem and
employ several search techniques such as multiple ascent hill-
climbing, simulated annealing, and genetic algorithms to automate
the refactoring process. However, they do not say where to apply
which refactorings because extraction of refactoring candidates
depends on random choices. Moreover, as mentioned in their pa-
per, search-based refactoring techniques have difficulties in com-
puting time and memory use.

Lee et al. [19] and Seng et al. [27] use genetic algorithms to pro-
duce a sequence of refactorings to apply to reach an optimal sys-
tem in terms of the employed fitness function. However, Seng
et al. [27] do not take into account that the application of a refac-
toring may create new refactoring candidates not originally pres-
ent in the initial system. Moreover, some of the produced
sequences of refactorings using the search-based approach may
not be feasible to be applied because of dependencies among refac-
toring candidates; applying one refactoring may conflict with the
application of other refactorings. Lee et al. [19] try to resolve the
refactoring-conflict problem by repairing infeasible sequences of
refactorings, but it seems time-consuming to reorder the randomly
generated sequence of refactorings without considering refactor-
ing conflict.
3. Overview of our approach

The following four subsections deal with the basic information
of our approach. The first subsection presents a framework for the
systematic refactoring identification to enable automated refactor-
ing. In the second subsection, we explain the goal of refactoring
and used refactoring in our approach. In the third subsection, the
first subsection presents the procedure of dynamic profiling tech-
nique used in our approach, and the next subsection provides the
definition and measurement of DMCs. Finally, the last subsection
presents the overview of our proposed approach for cost-effective
refactoring identification.

3.1. Framework for systematic refactoring identification

According to Mens and Tourwé [36], the refactoring process
consists of the following distinct activities.

1. Identify places where the software should be refactored.
2. Determine which refactoring(s) should be applied.
3. Guarantee that the applied refactoring preserves behavior.
4. Apply the refactoring.
5. Assess the effect of the refactoring on quality characteristics of

the software.

Table 1
Identified three phases by referencing refactoring process in [36].

Phase Description

Refactoring
identification

Determination where to apply which refactorings in what
order

Refactoring
application

Actual modification on source code

Refactoring
maintenance

Testing the refactored code, consistency checking with
other software artifacts, and change management

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 969
6. Maintain the consistency between the refactored program code
and other software artifacts such as documentation, design
documents, and test cases.

Based on this process, we categorize the activities of the
refactoring process into three phases (Table 1). ‘‘Refactoring-
identification phase’’ refers to planning to determine where to ap-
ply which refactorings or how to apply the refactorings for meeting
the goal of refactoring, such as improvement of maintainability,
understandability, and testability. ‘‘Refactoring-application phase’’
refers to the task of applying planned refactorings on actual source
codes. ‘‘Refactoring-maintenance phase’’ refers to three activities:
testing the refactored code, checking consistency with other soft-
ware artifacts such as requirement documents or Unified Modeling
Language (UML) models, and change management. The refactoring
is one kind of code change; therefore, in the change management
activity, tasks for recording change logs and change owners—who
are responsible for making those changes—for applying each refac-
toring are needed.

In this paper, we focus on refactoring identification and propose
a framework for systematic refactoring identification (as in Fig. 1)
to enable automated refactoring. In Section 4, we will explain the
detailed methods of the proposed approach for cost-effective refac-
toring identification.
3.2. Goal of refactoring and used refactorings in our approach

Dependency refers to a relationship where the structure or
behavior of an entity is dependent on another entity [37]. UML de-
fines dependency as a relationship where a change to the influent
modeling element may affect the dependent modeling element
[38]. Object-oriented software involves structural and behavioral
aspects of dependencies [39]. The relationships in classes such as
association, aggregation, composition, and inheritance represent
structural dependencies. Behavioral dependency occurs when a
Fig. 1. A proposed framework for syst
method calls another method (i.e., when a method requires a ser-
vice from another method to execute its own behavior); in this
case, the methods or the owner classes of those methods have
behavioral dependencies. In our approach, we consider a behav-
ioral dependency that occurs due to a method call. Note that struc-
tural and behavioral dependencies are not mutually exclusive; an
entity can have both structural and behavioral dependencies on
another entity [39]. For example, a ‘‘use’’ type of association rela-
tionship for structural dependency entails behavioral dependency.
High dependency between entities makes change-sensitive soft-
ware in that many classes are modified when making a single
change to a system (e.g., Shotgun Surgery [2]), or a single class is
modified by many different types of changes (e.g., Divergent
Change [2]). This makes software difficult to maintain, and, there-
by, lowers the overall maintainability level. The kinds of situations
mentioned above should be resolved. Therefore, refactorings
should be applied in a way that reduces dependencies of entities
(i.e., methods and classes), resulting in software accommodate
changes more easily.

Fowler [2] suggests considerable refactorings for resolving the
change preventing related bad smells—Divergent Change and Shot-
gun Surgery—as follows: Inline Class (i.e., merging class; in our ap-
proach, Collapse Class Hierarchy), Move Method, Move Field, and
Extract Class, etc. Among the mentioned refactorings, we currently
support two refactorings: Collapse Class Hierarchy and Move
Method. In a Collapse Class Hierarchy refactoring, all methods
and fields contained in a class are moved into another class; subse-
quently, the moved class is deleted. In a Move Method refactoring,
a method is moved into a target class. We do not consider Move
Field refactoring—moving attributes (i.e., fields) from one class to
another class—because fields have stronger conceptual binding to
the classes in which they are initially placed since they are less
likely than methods to change once assigned to a class [26]. For Ex-
tract Class refactoring, our rule-based approach has difficulty in
determining specific code blocks to be split in an automated
way; therefore, we leave this refactoring for future work. Since
the objective of our paper is to show the effect of using dynamic
information for cost-effective refactoring identification, we focus
on the two refactorings.
3.3. Dynamic profiling-based approach

3.3.1. Dynamic profiling
Dynamic profiling is a form of dynamic program analysis that

measures, for example, the use of memory, the use of particular
instructions, or frequency or duration of method calls; it is
ematic refactoring identification.

Fig. 2. Procedure for dynamic profiling.

Table 2
Difference between the static method call (SMC) and the dynamic method call (DMC).

SMC DMC

Source of measurement Source codes or
structural models

Programs execution
according to user
scenarios or
operational profiles

Subject of measurement Class and method Object and message
Degree of measurement Number of distinct

methods
Number of all
messages

970 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
achieved by instrumenting either the program source code or its
binary executable form. Dynamic profiling has been used by many
researchers [40–42]. The most common use of dynamically-pro-
filed information is to aid program optimization—for example,
the compiler writers use it to find out how well their instruction
scheduling or branch prediction algorithm performs. In our ap-
proach, the dynamic profiling technique is used to obtain the
dependencies of entities of methods and classes by executing pro-
grams the same way as in live operation based on user scenarios or
operational profiles—a quantitative representation of how the soft-
ware will be used. Note that in software reliability engineering, for
making reliability estimation, user scenarios or operational profiles
[6] are developed and maintained to describe how users actually
utilize the system. These dependencies are obtained by logging
the frequency of method calls; those dynamic dependencies are
defined as DMCs.

Fig. 2 depicts the procedure of dynamic profiling used in this
paper. The java instrumentation technique [7] is used for dynamic
profiling. On the compiled byte code, entering and exiting logging
codes are inserted at the start and the end of all method declara-
tions. This enables the tracing of logs of executed methods while
executing a program without modifying the original source codes.

3.3.2. Dynamic method call (DMC)
DMC is an instantiated form of a static method call (SMC). The

differences between the DMC and the SMC is explained in Table 2.
Definition 1 offers a precise definition of the DMC.

Definition 1 (Definition of DMC). When an object o1 sends a
message n to an object o2, there exists a DMC. We denote this
relation as o1~n o2. In the definition, DMC is represented as dmc and
it consists of six attributes as follows:
– id: a unique identifier.
– mcallee: a method from which the message n is initiated; a

method called from the method mcaller.
– mcaller: a method which calls mcallee.
– ccallType: a calling type class; a structural callee class.
– ccaller: an owner class of method mcaller.
– ccallee: an owner class of method mcallee.

As listed, id refers to a unique identifier of the dmc. The dmc can
be defined with two ends of methods mcaller and mcallee, and two
ends of classes ccaller and ccallee, which are the owner classes of those
methods. The ccallType is a calling type class that denotes a structural
callee class.

The DMCs existing in the system can be retrieved with respect
to two parameters: (1) entity (e) such as method and class and (2)
direction (d) such as import and export. The DMC for a class or
method in the import direction occur when the class or method im-
ports services from external class(es); in other words, the class or
method uses other methods that are defined in external class(es).
On the other hand, the DMC for a class or method in the export
direction occur when the class or method exports services to exter-
nal class(es); in other words, other methods defined in external
class(es) use the the class or method. We specify each direction
of import and export using the following symbols, � and �, respec-
tively. We denote DMC(e, d) as the list of DMCs that are retrieved
respect to the entity e and the direction d.

3.4. Overview of our approach for cost-effective refactoring
identification

Fig. 3 shows an overview of our proposed approach for cost-
effective refactoring identification. The following briefly describes
a procedure of the proposed cost-effective refactoring identifica-
tion method. The input of refactoring identification is the source
code. Using results obtained from static and dynamic profiling,
an initial profiled model is constructed. Refactoring candidate
extraction rules are defined and the maintainability evaluation
function is established based on the information obtained from
the profiled model (see Sections 4.1 and 4.2, respectively).
Refactoring identification consists of three main activities: refac-
toring-candidate extraction, refactoring-candidate assessment,
and refactoring selection. Refactoring candidates are extracted
using the refactoring-candidate extraction rules. Then, refactoring
candidates are applied to produce the tentatively refactored mod-
els and assessed by evaluating those refactored models using the

Fig. 3. Overview of our proposed approach for cost-effective refactoring identification.

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 971
maintainability evaluation function. Those refactoring candidates
are sorted in the order of expected degree of improvement on
maintainability. The best refactoring—that which most improves
maintainability—is selected in a greedy way and applied; then
the profiled model is updated. The procedure of refactoring
identification is iterated until no more refactoring candidates for
improving maintainability are found. The output of refactoring
identification is a sequence of refactorings, which is comprised of
the logged results of refactoring selection. The next section will
explain the detailed procedure and methods of the three main
activities of the refactoring identification.
4. Refactoring candidate extraction, assessment, and selection

4.1. Refactoring candidate extraction

Based on the DMCs, the rules are defined for extracting refactor-
ing candidates. By trying every refactoring-candidate extraction
rule, pairs of entities (i.e., methods and classes) are extracted as
refactoring candidates according to the heuristic design strategy,
which is defined in a way aimed at reducing dependencies of those
entities; then, using the max function, the part of refactoring can-
didates that are highly-ranked with the scoring function are cho-
sen to be assessed. The heuristic design strategies used in our
approach are explained in subSection 4.1.2.
4.1.1. Elements of refactoring-candidate extraction rule
Refactoring candidate extraction rules specify where to refactor

and which refactoring to use. Each rule consists of three elements:
(1) the scoring function, (2) the max function, and (3) the specific
corresponding refactoring to apply:
4.1.1.1. Scoring function. A scoring function is a kind of a fitness
function. It represents how much each pair of entities—which is ex-
tracted as a refactoring candidate according to a heuristic design
strategy—fits into the heuristic design strategy. Therefore, a scoring
function is designed to retrieve how many times a pair of entities is
extracted as a refactoring candidate using the heuristic design
strategy.
4.1.1.2. Max function. It is infeasible to assess all the refactoring
candidates extracted from all the defined rules, because there are
too many. Note that to assess refactoring candidates, each refactor-
ing candidate has to be individually applied to the current version
of the program and its effect on the refactored program is evalu-
ated, which requires a large computation cost. Therefore, we assess
only the refactoring candidates that are highly-ranked (top k) with
scoring functions. The role of the max function is to cut off the top
k refactoring candidates to be assessed. In the rule, the cutline
number represents k.

972 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
4.1.1.3. Refactoring. As stated in subSection 3.2, we use two types of
refactorings—Move Method and Collapse Class Hierarchy—and the
operations of those refactorings are presented in Procedures 1 and
2, respectively. We formulate pre-and post-conditions referring to
[26,43,44] and check before and after refactoring applications. We
do not specify these conditions in this paper.
Procedure 1. Collapse Class Hierarchy

Require: Cmerging: a class that is merging the other class,
Require: Cmerged: a class that is to be merged

for all Mmerged 2 Cmerged do
Move Method (Cmerging, Mmerged)

end for
Cmerged.ancestor Cmerged.ancestor [Cmerging.ancestor
Cmerged.descendant Cmerged.descendant [Cmerging.descendant
Cmerged.field Cmerged.field [Cmerging.field
remove Cmerged
Procedure 2. Move Method

Require: C: a target class to which a method is moved
Require: M: a method to be moved

M.overridingMethod findingOverriding (C, M)
/⁄ findingOverriding function is specified in Procedure 3.⁄/
C.method C.method [{M}
Procedure 3. findingOverriding

Require: c: a target class to which a method is moved
Require: m: a moving method
/⁄ procedure findingOverriding returns the method by which

movingMethod is overrided. ⁄/
queue ancestor classes of c
visitedClass ;
while queue – ; do

tmpClass remove one element of class from queue
add tmpClass to visitedClass
for all tmpMethod2 methods in c do

if tmpMethod = m then
return tmpMethod

end if
end for
for all ancClass 2 ancestor classes of tmpClass do

if visitedClass does not contain ancClass then
add ancClass to queue

end if
end for

end while
return null
4.1.2. Design of refactoring-candidate extraction rule

For each design strategy, pairs of methods (or classes) are ex-
tracted as the entities of the refactoring candidate of Move Method
(or Collapse Class Hierarchy), and the number of extractions for the
pairs of methods (or classes) is retrieved by the scoring function.
The rules are defined in the following way: a part of refactoring
candidates that are highly-ranked with the scoring function are
chosen to be assessed using the max function. Note that for each
strategy, two types—method and class—of scoring functions are
obtained, and three rules are defined.

In the following, for each type of heuristic design strategy, we
present a brief explanation and the procedure for obtaining the
corresponding scoring functions. We then define the refactoring-
candidate extraction rules using the obtained scoring functions in
a semi-formal way.

Heuristic design strategy type 1.

Explanation.
It is better to gather the methods, which are called by one method
but are spread over many different classes, into one class. Let a
method m call the methods, and those called methods are imple-
mented in different classes. The N stands for the threshold to deter-
mining the situation such that those called methods are
implemented in many different classes. Therefore, we define the
following heuristic design strategies: when those called methods
are implemented in the N (N = 2, 3, 4, 5, 6) classes, those methods
(or their owner classes) are extracted as the entities of refactoring
candidates of Move Method (or Collapse Hierarchy Class). In this
paper, we set the N from 2 to 6, because we have tested for all
methods in all three subjects—jEdit, Columba, and JGIT—and the
maximum number of different classes for each subject does not
exceed 6. Note that 1 need not to be examined because it means
all the called methods are in the same class. The N is not fixed
and can be differentiated according to the characteristic of the used
project.

Procedure.
Procedure 4 is illustrated for obtaining scoring functions as follows.
For all class c in the system, and for all method m in class c, let a
method m call the methods, and those called methods are imple-
mented in different classes. If the number of different classes is
greater than or equal to N—the threshold to determining the
situation such that methods are implemented in many different
classes—then the pair of methods in the list of the called methods
is extracted as the entities of the refactoring candidate of Move
Method, and the number of extraction for the pair of methods is
increased for the scoring function NDiff_M (when methods in the
pair are neither identical to each other nor identical with the
method m). This also applies to the class-level; therefore, the pair
of classes in the list of classes—the owner classes of those called
methods—is extracted as the entities of the refactoring candidate
of Collapse Hierarchy Class, and the number of extraction for the
pair of classes is increased for the scoring function NDiff_C (also
when classes in the pair are neither identical to each other nor
identical with the class c).

Rules. The N stands for 2, 3, 4, 5, and 6, hence for this type of the
heuristic design strategy, five design strategies are defined;
then, a total of 15 rules are defined.

� R1(N=2),R4(N=3),R7(N=4), R10(N=5), R13(N=6):"(ci, cj)
2max(NDiff_C,cutline) ? Collapse Class Hierarchy (ci, cj)

� R2(N=2), R5(N=3), R8(N=4), R11(N=5), R14(N=6):"(mi, mj) 2
max(NDiff_M,cutline) ? Move Method (owner class of
mi, mj)

� R3(N=2), R6(N=3), R9(N=4), R12(N=5), R15(N=6):"(mi, mj) -
2max(NDiff_M,cutline) ? Move Method (owner class of
mj, mi)

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 973
Procedure 4. getNDiff_M_and_NDiff_C (N = 2, 3, 4, 5, 6)

for all c 2 classes in the system, m 2 methods in c do
diffClass ; /⁄a set for saving different callee classes⁄/
for all dmc2DMC (m,�) do

if dmc.ccallee–c then
add dmc.ccallee to diffClass

end if
end for
if diffClass.size P N then

for all dmc1,dmc2 2 DMC(m,�) do
if dmc1 –dmc2 then

c1 dmc1.ccallee,c2 dmc2.ccallee

if c1–c2 & & c1–c & & c2–c then
NDiff_C ({c1,c2}) NDiff_C ({c1,c2}) + 1

end if
m1 dmc1.mcallee,m2 dmc2.mcallee

if m1–m2 & & m1–m & & m2–m then
NDiff_M ({m1,m2}) NDiff_M ({m1,m2}) + 1

end if
end if

end for
end if

end for
Heuristic design strategy type 2.

Explanation.
Again, it is better to gather methods that have many interactions
into one class. Let a method m call the other method n, and those
methods are implemented in different classes. Then, we define the
following heuristic design strategy: when those two methods have
interactions, those methods (or their owner classes) are extracted
as the entities of refactoring candidates of Move Method (or Col-
lapse Hierarchy Class).

Procedure.
Procedure 5 is illustrated for obtaining scoring functions as follows.
For all class c in the system, and for all method m in class c, let a
method m call the other method n, and those methods are imple-
mented in different classes. Subsequently, the pair of methods is
extracted as the entities of the refactoring candidate of Move
Method, and the number of extraction for the pair of methods is
increased for the scoring function I_M (when the methods in a pair
are not identical to each other). This also applies to the class-level;
therefore, the pair of methods classes—the owner classes of those
methods—is extracted as the entities of the refactoring candidate
of Collapse Hierarchy Class, and the number of extraction for the
pair of classes is increased for the scoring function I_C (also when
classes in a pair are not identical to each other).

Rules. For this type of the heuristic design strategy, one heuristic
design strategy is defined; then, three rules are defined. Note
that for each rule, the refactoring candidates which are
highly-ranked (top cutline) with scoring functions are cho-
sen to be assessed; this can be said that the pairs of entities
that have many interactions are chosen to be assessed.

� R16:"(ci, cj) 2max(I_ C,cutline) ? Collapse Class Hierarchy

(ci, cj)
� R17:"(mi, mj) 2max(I_M,cutline) ? Move Method (owner

class of mi, mj)
� R18:"(mi, mj) 2max(I_M,cutline) ? Move Method (owner

class of mj, mi)
Procedure 5. getI_C_and_I_M

for all c 2 classes in the system, m 2 methods in c do
if m –null then

for all dmc1 2 DMC(m,�) do
c1 dmc1.ccaller,c2 dmc1.ccallee

if c1 –c2 & & c1 –c & & c2 –c then
I_C({c1,c2}) I_C({c1,c2}) + 1

end if
m1 dmc1.mcaller,m2 dmc1.mcallee

if m1 –m2 & & m1 –m & & m2 –m then
I_M({m1,m2}) I_M({m1,m2}) + 1

end if
end for

end if
end for
4.2. Refactoring candidate assessment

Before making a decision on which refactorings to apply, we
need to assess the extracted refactoring candidates. Each of the ex-
tracted refactoring candidates is assessed as follows. The refactor-
ing candidate is applied to the current version of the profiled
model, and the tentatively refactored model is produced. Then,
the design quality of maintainability for the refactored model is
evaluated. To evaluate maintainability of the refactored model,
the maintainability evaluation function is established. By using
the maintainability evaluation function, the extracted refactoring
candidates are assessed and ranked in the order of their expected
degree of improvement on maintainability.

4.2.1. Maintainability evaluation function
In object-oriented software, two objectives—high cohesion and

low coupling—have been accepted as important factors for good
software design quality in terms of maintenance [45], because less
propagation of changes to other parts of the system or side effects
would occur [46,47]. Cohesion corresponds to the degree to which
elements of a class belong together, and coupling refers to the
strength of association established by a connection from one class
to another. In search-based approaches, to combine multiple objec-
tives into a single-objective function, methods such that 1) metrics
for each objective are normalized, weighted, and added up [48,49],
or 2) Pareto optimality [28], are used. We adopt the former ap-
proach for conflating two objectives of metrics into a single fitness
function. We design the maintainability evaluation function as
(cohesion/ coupling), because the maintainability evaluation func-
tion of this design produces larger fitness values as the software
gets more maintainable (with higher cohesion and lower coupling).
In addition, the two objectives may conflict in many cases, and the
maintainability evaluation function of this design prevents merg-
ing of unrelated units of codes, which reduces couplings but lowers
cohesion.

Fig. 4 shows the formulation of the maintainability evaluation
function, which produces the fitness value of the refactored model.
Each metric is normalized in the following way: the difference be-
tween the average and minimum values is divided by the differ-
ence between the maximum and minimum values of the metric.
The average value of the metric is obtained by summing all the val-
ues of the classes and dividing this by the number of classes. For
composing all coupling metrics, weight values, whose total sum
is one, are multiplied to each normalized coupling metric, then
all the normalized coupling metrics are added up. Note that by
using the weight values, a user can decide to focus on certain as-
pects of the maintainability evaluation function. In our approach,
we assign a weight value of 0.25 for each coupling metric.

Fig. 4. Maintainability evaluation function for producing fitness value.

974 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
In the following, each metric—constituting the maintainability
evaluation function—is explained. For cohesion, the Method Simi-
larity Cohesion (MSC) [50] metric is used. In this metric, the simi-
larity for all pairs of methods are integrated and normalized to
measure how cohesive the class is. Its difference from the other
cohesion metrics is that it considers degree of similarity between
a pair of methods in a class. For instance, Lack of Cohesion in Meth-
ods (LCOM) [51] does not account for the degree of similarity be-
tween methods; instead, it categorizes the sets into two groups—
empty and non-empty—and produces the same results for a pair
of methods whether it has one instance variable or all instance
variables shared in common. Another cohesion metric, Cohesion
Among Methods in Class (CAMC) [52], is not considered, because
this metric only deals with the parameter types (not usage of in-
stance variables or methods). MSC for a class C is calculated as
follows:

MSCðCÞ ¼ 2
nðn� 1Þ

X
nðn�1Þ

2

i¼1

IVc

IVt
i;

where class C has n methods, and for a pair of methods, IVc and IVt

stand for the common (i.e., intersect set) and total instance (i.e., un-
ion set) variables used by the pair of methods repeatedly. Since
there are nðn�1Þ

2 distinct combinations of pairs of methods in a class,
i ranges from 1 (i.e., first pair) to nðn�1Þ

2 (i.e., last pair), and jIV jc
jIV jt

i indi-
cates the similarity of the pair of methods, respectively.

For coupling, four coupling metrics—defined based on the DMCs
as well as the SMCs—are used. The size of the DMCs in both direc-
tions for all methods in a class C is defined as Dynamic Coupling
(DC). DC can be specified as

DCðCÞ ¼
X

mi

jDMCðmi;�Þj þ jDMCðmi;�Þj;

where every method m in class C. In the same way, the size of SMCs,
measured on a method between caller and callee classes, in both
directions for all methods in a class C, is defined as Static Coupling
(SC); SC can also be specified based on SMCs. Let SMC(e, d) denote
the list of SMCs retrieved in respect to the entity e and the direction
d likewise DMC(e,d). Then, SC can be specified as

SCðCÞ ¼
X

mi

jSMCðmi;�Þj þ jSMCðmi;�Þj;

where every method m in class C. The modified versions of DC and
SC are defined and named DCS and SCS by converting from lists into
the set of DMC and SMC. In other words, redundant elements are
eliminated from the lists of DMC and SMC for degrading the effect
of strength of dependencies; therefore, only distinct elements re-
main in the set of DMCS and SMCS. Each of the defined coupling
DCS and SCS is specified as follows:

DCSðCÞ ¼
X

mi

jDMCSðmi;�Þj þ jDMCSðmi;�Þj;

SCSðCÞ ¼
X

mi

jSMCSðmi;�Þj þ jSMCSðmi;�Þj:

It is worth to mention that we have considered four couplings
which capture eight types of combination: (dynamic method call
vs. static method call) � (import direction vs. export direction) �
(distinct methods [set] vs. all invoked methods [list]). They cover
not only many well-known coupling metrics but also additional
features (i.e., dynamic aspects). For instance, Message Passing Cou-
pling (MPC) [53] counts static method calls for all invoked methods
in the import direction, and Request For a Class (RFC) [51] counts
static method calls for distinct methods in the import direction,
while Coupling Between Objects (CBO) [51] counts static method
calls for distinct methods in both directions. The coarse-grained
metrics, such as Coupling Factor (CF) [54], are not considered, be-
cause they are measured based on the number of coupled classes,
not on the methods. All the mentioned coupling metrics capture
only static aspects, which are based on static method calls that
can be obtained by analyzing source codes without running a
program.
4.3. Refactoring selection

The application of a refactoring may (1) change or delete ele-
ments necessary for other refactorings, and thus disable these
refactorings and (2) create new available refactoring candidates
to apply. As a result, the application order of refactorings deter-
mines the total effect on maintainability improvement. Therefore,
when selecting refactorings to apply among extracted refactoring
candidates, the applying order needs to be considered to achieve
the greatest effect of maintainability improvement. Note the diffi-
culty in selecting multiple refactorings, because refactorings need
to be scheduled by considering issues such as refactoring depen-
dencies or newly created refactoring candidates. Theoretically,
when the number of available refactoring candidates is m and
the number of the selecting refactorings is n and assuming that
there are no repetitions of refactoring candidates, the number of
the refactoring schedules that need to be examined is n-permuta-
tions of m that can be formulated by m!/(m � n)!. As the number of
refactoring candidates increases, the number of possible refactor-
ing schedules increases exponentially; therefore, scheduling
refactorings by investigating all possible orders may become NP-
hard [19]. Furthermore, the cost of evaluating the effect of every
refactoring candidate is large, since the refactoring needs to be
actually applied as stated in Section 4.2. We are working to devise
a technique for multiple selections and leave this for future work.
Hence in our approach, among refactoring candidates, we select
the best refactoring in a one-by-one—greedy manner—by re-per-
forming the process of refactoring identification.

For selecting the best refactoring, refactoring candidates are pri-
oritized in the descending order of fitness values of the maintain-
ability evaluation function, and the refactoring with the largest
fitness value is selected. It is important that before selecting a
refactoring, for the refactored model, we check the specialization
ratio (S) [55], which is a measure used to prevent merging of too
many classes together and getting the class hierarchy wider. S is
formulated as follows: (] of classes �] of root classes)/(] of clas-
ses �] of leaf classes), where the root classes are the distinct class
hierarchies, and the leaf classes are the ones from which the other
classes do not inherit. S measures the width of the inheritance tree;
in other words, S is the average number of derived classes for each
base class. Therefore, a higher value indicates a wider tree. If the S
of the refactored model exceeds specific threshold c, then an alter-
native refactoring (for example, a refactoring with the second-larg-
est fitness value) is selected.

Fig. 5. Overall tool architecture.

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 975
After selecting the best refactoring, the profiled model is up-
dated into the selected refactored model, and the selected refactor-
ing is logged. Refactoring-candidate extraction and assessment are
re-performed to select the next refactoring, and the refactoring
identification process is iterated until there are no more improve-
ments of fitness values for the extracted refactoring candidates.
When no more refactoring candidates for improving maintainabil-
ity are found, the refactoring identification procedure is stopped,
and the sequence of logged refactorings is generated.
5. Tool implementation

5.1. Overall tool architecture

The proposed method has been implemented [56] using Java
with Eclipse environment. Fig. 5 illustrates the overall tool archi-
tecture. The following main modules comprise the tool: static pro-
filer, dynamic profiler, dynamic-static composer, refactoring
simulator, metric measurer, fitness evaluator, and refactoring
selector. In the static profiler, given the Java source code, code
structure information such as SMCs and class definitions are ex-
tracted. On the other hand, in the dynamic profiler, DMCs are ex-
tracted by executing a Java byte code compiled from the Java
source code using user scenarios or operational profiles. In the dy-
namic-static composer, the DMCs are mapped into corresponding
SMCs from which those DMCs are instantiated, and the base Ab-
stract Object Model (AOM) is constructed. More detailed explana-
tion of AOM is provided in Section 5.2. In the refactoring extractor,
refactoring candidates are extracted using refactoring-candidate
extraction rules. In the refactoring simulator, refactoring candi-
dates are applied by transforming base AOM, and tentatively refac-
tored AOMs are produced. In the metric measurer and the fitness
evaluator, for all tentatively refactored AOMs, metrics are derived
and used to calculate the fitness value of the maintainability eval-
uation function. In the refactoring selector, if no more refactoring
candidates for improving fitness values are found, the tool is
stopped, and it generates the selected refactoring logs as output
indicating a sequence of recommended refactorings. Otherwise,
the refactoring that makes the refactored AOM with the best fit-
ness value is selected in a greedy way and applied, then the base
AOM is updated into the refactored AOM, only when the special-
ization ratio of the refactored AOM does not exceeds the specific
threshold c. After that, the procedure of the refactoring extractor,
the refactoring simulator, the metric measurer, the fitness evalua-
tor, and the refactoring selector are iterated. In addition to the best
selection mode, the tool can be operated in a user-interactive
mode. In user-interactive mode, users can select the preferred
refactoring. Fig. 6 shows a snapshot of the tool operation.
5.2. Abstract Object Model (AOM)

AOM is the profiled model; it is specifically designed in our tool
for saving the dynamically and statically profiled information and
simulating the effect of refactorings without actually applying
refactorings on source codes. Fig. 7 shows the metamodel of the
AOM. A method meta-class AOMMethod is associated with a DMC
meta-class DynamicMehtodCall and a SMC meta-class StaticMethod-

Call. This enables a DMC/SMC to be navigable with two ends: a

Fig. 6. A snapshot of tool operation.

976 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
caller method and a callee method. In the opposite direction, a
method is able to navigate the DMCs/SMCs that the method calls
and the DMCs/SMCs by which the method is referred. The DMC
meta-class DynamicMehtodCall is also associated with the SMC
meta-class StaticMethodCall. If multiple or even zero method calls
exist between two entities (such as methods or classes) during
run-time execution, the SMC counts this as one. In other words,
the multiplicity of the SMC to the DMC is 0..⁄, whereas the multi-
plicity of the DMC to SMC is one. This enables the DMC to be nav-
igable with the SMC from which the DMC is instantiated. In the
opposite direction, the SMC is able to navigate DMCs that are actu-
ally instantiated.

The AOM is beneficial in two ways. First, the cost of computing
metrics and fitness value for every trial of refactoring is rather
high. Since not all the information of the source codes is necessary,
computing costs can be saved by manipulating abstract source
code models. Second, by maintaining the metamodel of the AOM,
information related to the DMCs can be updated without re-doing
dynamic profiling at every trial of refactoring. As mentioned in
Fig. 7. A metamodel of the A
subSection 5.1, in the dynamic-static composer, the DMCs are
mapped into the corresponding SMCs from which those DMCs are
instantiated. Therefore, for each trial of refactoring, by adjusting
the information related to the SMCs—such as the classes and fields
of two ends of caller and callee methods of the SMCs—the updated
information related to the DMCs can be obtained by tracing the
information related to the SMCs.
6. Evaluation

We evaluate our approach—refactoring identification using dy-
namic information—to check its usefulness for identifying cost-
effective refactorings. The hypotheses for our experiment are as
follows:

H1. Dynamic information is helpful in identifying cost-effective
refactorings that fast improve maintainability (i.e., that lead
to a high rate of maintainability improvement).
OM used in this paper.

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 977
H2. Dynamic information is helpful in extracting refactoring
candidates in the classes where real changes had frequently
occurred.

The first hypothesis is intended to test the overall usefulness of
the approach for the refactoring identification, while the second
hypothesis is to test the capability of the approach in extracting
refactoring candidates. In the first subsection, the experimental
subjects and data processing method for those subjects are ex-
plained. In the second and third subsections, the evaluation meth-
ods are explained, and the results are presented for each
hypothesis, respectively. The final subsections end with threats
to validity and discussion.

6.1. Evaluation subjects and data processing

Three projects are chosen for experimental subjects: jEdit [8],
Columba [9], and JGIT [10]. A number of reasons led us to select
these subjects.

� The full source code of each version is available.
� They contain a relatively large number of classes.
� They are written in Java; our proposed method applies to

object-oriented software.
� Their development histories are well-managed in version-con-

trol systems.

Table 3 summarizes characteristics and development histories
of each subject.

To apply the proposed approach on each subject, one version of
the source code is selected as input data (as the last row in Table 3).
It is important to mention that we select a version after which ma-
jor changes have occurred. We also do not select the early version
because, at that time, the software is unstable, and meaningless
changes may occur frequently. In short, we take into account a ma-
ture version.

6.1.1. Performing the dynamic profiling
To obtain dynamic information of the dependencies of entities,

dynamic profiling is performed by executing the selected version
of the program of each subject according to its user scenarios or
operational profiles. In this experiment, the user scenarios or oper-
ational profiles data are not available, since the subjects are chosen
from open source projects. Therefore, the dynamic information is
obtained by executing the programs from various users who exhi-
bit normal behavior in using the programs. To obtain more reliable
dynamic profiling results, we set specific criteria for use of soft-
ware regarding characteristics of users, experimental environment,
or experimental conditions. Note that we do not take into account
abnormal or extraordinary scenarios, because they may result in
suggesting refactorings in parts not actually in use. For example,
for jEdit, we do not log the bootstrapping part of the editor; we
profile only the editing part. Similarly, for Columba, we do not
log the initializing part of the e-mail client, but only functions such
Table 3
Characteristics and development history for each subject.

Name jEdit

Type Text editor
Total] of revisions 19501
Report period 2001–09 � 2011–09
Number of developers 25
Version to apply the proposed approach

(] of classes in the version)
jEdit-4.3 (953 classes)
as retrieving messages from a mailbox, composing messages, and
submitting messages to a server. In the following, for each subject,
we present the criteria and the rationale for using it.

jEdit [8] is a java-based text editor which is developed for using
the same editor on different platforms or operating systems. It also
provides very common graphic user interfaces like other text edi-
tors. Since it provides only one interface, GUI, we set the criteria
of the experimental condition: characteristics of language (natural
language and formal language) and length of written text (long and
short). To detect typos while editing the natural language, the text
editor should search an entire dictionary that is rather big; while a
typo on the formal language (e.g., programming language) can be
relatively easily detected. On the other hand, for a long description,
the users tend to change the structure of the description while
writing the description. However, for a short description, like a
short e-mail message, the description is written without revision.
The dynamic profiling was conducted as follows:

- Long description with formal language: C and python server
code, 2 days, 1 man.

- Short description with formal language: html, python, 1 day, 2
men.

- Long description with natural language: latex, 2 days, 1 man.
- Short description with natural language: E-mail message, 1 day,

2 men.

Columba [9] is an E-mail client program implemented using
Java. It supports standard protocols—POP3 and IMAP4—for e-mail
clients and provides usual GUI features, such as showing the list
of received and sent mails and e-mail composition. According to
the interfaces which Columba has, we set the criteria of the exper-
imental condition: network protocol and GUI. For the network pro-
tocol, we take into account POP3 and IMAP4. As we mentioned
above, the GUI is composed of three common mail client actions,
and we distinguish read-intensive users and write-intensive users.
By observing the usage pattern of the users, we found that the
graduate school students tended to be read-intensive users, while
the business people tended to be write-intensive users, relatively.
Therefore, we chose the two user groups for realizing the experi-
ment condition. The dynamic profiling was conducted for four days
with six graduate school students and six business men working in
a venture company. Since all of them used the G-mail, they used
the Columba with the POP3 on first two days and then they used
it with the IMAP4 on next two days.

JGIT [10] is a java implementation of git, which is a well-known
distributed version control system. The git provides very complex
version control operations, such as three-way merging, cherry-
picking, and rebase. Moreover, the git uses various protocols: https,
ssh, or git. Among those functionalities, the JGIT does not provide
all of them, but only provide core functionalities: clone, push, com-
mit, fetch or branch. In fact, usage pattern of JGIT may be varied by
the habit of the user. For example, some developers prefer the
small commit and big push, while some other developers prefer
the big commit and big push, and few developers prefer the small
Columba JGIT

Email client Distributed source version control system
458 1616
2006–07 � 2011–07 2009–09 � 2011–09
9 9
Columba-1.4 (1506 classes) v1.1.0.201109151100-r (494 classes)

Table 4
Examined range of revisions.

jEdit Columba JGIT

18,000–19,000 300–450 1–1616

978 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
commit and small push. On the other hand, some users does not
use commit or push functionalities, but only use clone and
fetch—of course, these developers do not use branch. The dynamic
profiling was conducted for three days by three developer and one
manager of the venture company as follows:

� Each of three developers has characteristics as follows:
– Domain: server side; language: Erlang and Python; commit

interval: short; push interval: short; clone or pull interval:
rare

– Domain: client side (iOS); language: objective-C and C; com-
mit interval: short; push interval: long; clone or pull inter-
val: rare

– Domain: client side (Android); language: Java and C; commit
interval: long; push interval: long; clone or pull interval:
rare

� The manager’s characteristics are as follows:
– Domain: server, client, and library side; language: Java,

objective-C and C; commit interval: long; push interval:
long; clone or pull interval: short.

6.1.2. Extracting changes
For each subject, real changes—that had occurred within the

examined revisions of the development history—are extracted.
We examined the revisions (as in Table 4) that had been made after
the selected version. The changed methods include method body
changes as well as method signature changes, such as changes in
name, parameter, visibility, and return type.

To test Hypothesis 1, the changed methods across the revisions
are added to the list of changed methods, which is used as the in-
put for change impact analysis. Note that the methods in the list of
changed methods can be redundant to take into account the effect
of their frequency of occurrences. To test Hypothesis 2, the set of
changed classes—which are the owner classes of those changed
methods—and the corresponding number (i.e., frequency) of
changes for those classes are used to be compared with extracted
classes as refactoring candidates. The procedure used for extracting
the list of changed methods is as follows. First, we retrieve the
source code in which each revision occurred. Next, we analyze files
in the source code for each revision to obtain the following
information.

abstract_java
abstract_java is a function such that:
(rev_number, file_name) ? a set of file_info_entry

file_info_entry
file_info_entry is a tuple such that:
(start_line_number, end_line_number, class_name, method_name)
Then, we use Diff and obtain changed line numbers.

line_change
line_change is a function such that:
(former_rev_number, latter_rev_number, file_name) ?
changed_line_number

Finally, using these changed line numbers, we can obtain the
changed methods which had been changed across the revisions.
6.2. Evaluation method

6.2.1. Hypothesis 1: Effect of dynamic information for cost-effective
refactoring identification

To test Hypothesis 1, which aims to investigate whether dy-
namic information is helpful in identifying cost-effective refactor-
ings that fast improve maintainability and lead to high rate of
maintainability improvement, we use the method of change simu-
lation. We compare the results of change simulation to observe
how quickly the number of propagated changes is reduced on
the refactored models whose applied refactorings are identified
using the following three comparison groups.

1. The approach using dynamic information only (group 1).
2. The approach using static information only (group 2).
3. The combination of the two approaches (group 3).

For each subject, refactorings are identified from three compar-
ison groups as follows. (1) In group 1, for each iteration of refactor-
ing identification process, 180 refactoring candidates (i.e., 18 rules
[6 types of scoring functions � 3 types of refactorings] � 10 top
refactoring candidates) are assessed. In this experiment, the cutline
number—the threshold number for limiting the consideration set
of refactoring candidates—is set to 10. The best refactoring is se-
lected and applied. We continue to perform the refactoring identi-
fication process until no more refactoring candidates for improving
maintainability are found. At last, we obtain a sequence of refact-
orings. (2) Group 2 follows the same approach of the group 1 but
substitutes the DMCs with SMCs (i.e., using static measures instead
of dynamic measures) in the refactoring-candidate extraction rules
and the maintainability evaluation function for extracting and
assessing refactoring candidates, respectively. (3) In group 3, the
considered refactoring candidates are the ones extracted from both
approaches—refactoring candidates from group 1

S
refactoring

candidates from group 2—and the best refactoring is selected and
applied in an iterative way (with the same method of our study).
The approach of group 2 is to test the effect of using dynamic infor-
mation, and the approach of group 3 is to test whether the dynamic
information can be additional or complementary information to
the static information. Note that the aim of this test is not to com-
pare the performance of the approach of using dynamic informa-
tion versus the approach of using static information but to
investigate the effect of using dynamic information for identifying
cost-effective refactorings.

To assess the capability of refactorings for maintainability
improvement, we use the change simulation method. The basic idea
is to inject changes—extracted as real changes that have occurred
during software maintenance—and then obtain propagated
changes by performing change impact analysis. We call the former
change the original change and the latter change the propagated
change. This evaluation method is based on the belief that propa-
gated changes indicate how the design can withstand original
changes; in other words, the more easily the design accommodates
changes, the fewer propagated changes will occur. Therefore, the
capability of refactorings for maintainability improvement is mea-
sured by the reduced number of propagated changes. For perform-
ing change simulation, the list of changed methods (explained in
subSection 6.1.2) is used as original changes (input for change im-
pact analysis). Then, change impact analysis is performed on each
of the refactored model—produced by every application of a se-
quence of refactorings—to obtain propagated changes (output for
change impact analysis). Change impact analysis is the method
to identify the potential consequences for a change; therefore,
the propagated changes are computed by taking the directly and
indirectly affected methods from the method. Change impact anal-
ysis used in the experiment is implemented as follows. For each

Fig. 8. Change distribution graph (X-axis:] of occurred changes for each class, Y-axis:] of corresponding classes).

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 979
method in the list of changed methods, the propagated methods,
that refer to this method but are defined in other classes, are re-
trieved. Note that the change impact analysis is performed in the
batch processing mode. Subsequently, the propagated methods
or classes—the owners of the propagated methods—are accumu-
lated for all the methods in the list of changed methods. The
two-steps of indirect propagated methods are considered using
the weight value of 0.5, while the direct propagated methods use
the weight value of 1.

The cost-effectiveness of the identified refactorings can be eval-
uated by observing how fast the number of propagated changes is
reduced. In our approach, we assume that invested refactoring ef-
fort (cost) is the number of applied refactorings. Two indicators are
used: (1) the percentage of reduction for propagated changes and
(2) the rate of reduction for propagated changes. The indicators
can be calculated as follows. Let rn represent the nth applied refac-
toring. Let the number of propagated changes for accommodating
changes on the initial profiled model be ic0, iclast on the design
applying all the identified refactorings from the first to the last
refactoring, and icn on the design applying a sequence of identified
refactorings r1, . . ., rn. The percentage of reduction for propagated
changes (percntRPC) of rn is as below.

percntRPCðrnÞ ¼
ic0 � icn

ic0 �minficlastg
� 100;

where min{x} returns the minimum number of propagated changes
among all comparison groups, which is needed for normalization.
The rate of reduction for propagated changes (rateRPC) between
rm and rn, when rm precedes rn, is calculated by the differences of
percentage of reduction for propagated changes over the number
of applied refactorings as below.

rateRPCðrm; rnÞ ¼
percntRPCðrnÞ � percntRPCðrmÞ

] of applied refactorings between rn and rm:

In this experiment, the rate of reduction for propagated changes
is considered for every applied refactoring; therefore, it can be rep-
resented as to percntRPC(rn) � percntRPC(rn�1), since the number of
applied refactorings between refactorings is 1.

6.2.2. Hypothesis 2: Effect of dynamic information for extracting
refactoring candidates in frequently changed classes

The underlying assumption of our approach is that changes are
more prone to occur in the pieces of codes the users more often uti-
lize and that, hence, applying refactorings in these parts would fast
improve maintainability of software. For this reason, we extract
refactoring candidates in the entities—involved in given scenar-
ios/functions of a system—in a way that reduces dependencies of
those entities.

To validate the assumption, we test Hypothesis 2, which aims to
investigate whether dynamic information is helpful in extracting
refactoring candidates in the classes where real changes had fre-
quently occurred. For each subject, we compare a) the classes of
the top 10%, 20%, 30% and 100% (i.e., all changes) most frequently
changed during the real development history (explained in subSec-
tion 6.1.2) with b) the classes of refactoring candidates extracted
from the approach using dynamic information and the approach
using static information, respectively, to observe how many classes
extracted as refactoring candidates are found in real changed
classes. In addition to all changes, we consider top k% (k =
10, 20, 30) most frequently changed classes to examine the capa-
bility of each approach for extracting refactoring candidates from
highly-ranked frequently changed classes. We have considered
up to the top 30% most frequently changed classes, because, for
three subjects—jEdit, Columba, and JGIT—most of the changes oc-
cur in those changed classes (see Fig. 8). For instance, the ratio of
the number of occurred changes in the top 30% most frequently
changed classes over the total number of occurred changes in
changed classes is 143 out of 207 � 70%, 788 out of 993 � 80%,
and 8754 out of 9773 � 90%, for jEdit, Columba, and JGIT, respec-
tively. Note that, as with Hypothesis 1, the aim of this test is not
to compare the performance of the approach of using dynamic
information versus the approach of using static information but
to investigate the effect of using dynamic information for extract-
ing refactoring candidates in the frequently changed classes.

We use the classes of refactoring candidates that are obtained
from group 1 (i.e., the approach using dynamic information only)
and group 2 (i.e., the approach using static information only) in
Hypothesis 1. The lists of the extracted classes as refactoring can-
didates for each approach and the list of real changed classes are
ranked in a descending order according to the number of occurred
changes for each class. Let the ranked list of the top k% most fre-
quently changed classes be rankKChanged, the ranked list of the
classes extracted as refactoring candidates for group 1 be rankDy-
namic, and the ranked list of group 2 be rankStatic. By comparing
rankKChanged with rankStatic and rankDynamic, we first obtain
(1) commonly found classes (i.e., intersect set). We then obtain
(2) the two distance measures (K: Kendall’s tau, F: Spearman’s
footrule [57]), which are the measures for comparing similarity
of two top k lists.
6.3. Results

6.3.1. Hypothesis 1: Effect of dynamic information for cost-effective
refactoring identification

The results are represented in Figs. 9–11 for jEdit, Columba, and
JGIT, respectively; the x-axis shows each applied refactoring, and
the y-axis shows the number of propagated changes of methods
or classes to accommodating original changes. In addition, Table
5 summarizes the percentage of reduction for propagated changes
(i.e., methods) and the rate of reduction for propagated changes
(i.e., methods) for each applied refactoring.

For jEdit, as in Fig. 9a and 9b, the same number of propagated
changes is reduced for all approaches in the first applied refactor-
ing. However, from the next applied refactorings, the approaches

Fig. 9. Change simulation for jEdit.

Fig. 10. Change simulation for Columba.

980 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
using dynamic information (group 1 and group 3) reduce the num-
ber of propagated changes faster than the approach using static
information only (group 2) does. For this reason, to reach the same
number of reduced propagated changes—for example, where the
percentage of reduction for propagated changes is around 72–
75%—the required numbers of refactoring application are 5, 6,
and 7 for group 3, group 1, and group 2, respectively. As a result,
the average rate of reduction for propagated changes of all nine
of applied refactorings for the approaches using dynamic informa-
tion (group 1 and group 3) are higher than that of the approach
using static information only (group 2). For instance, the average
rates of reduction for propagated changes of all nine applied refact-
orings are 11.11%, 10.56%, and 9.44% for group 3, group 1, and
group 2, respectively. Furthermore, at the final solution, where
propagated changes do not drop anymore, the number of reduced
propagated changes of the approaches using dynamic information
(group 1 and group 3) is greater than that of the approach using
static information only (group 2). For instance, when positing the
total percentage of reduction of propagated changes for the combi-
nation of the two approaches (group 3) as 100%, then those for
group 1 and group 2 are 95% and 85%, respectively.

For Columba, as in Fig. 10a and 10b, the approaches using dy-
namic information (group 1 and group 3) also reduce the number
of propagated changes much faster and bigger than the approach
using static information only (group 2) does. For this reason, as
in jEdit, to reach the same number of reduced propagated
changes—for example, where the percentage of reduction for prop-
agated changes is around 75–76%—the required numbers of refac-
toring application are 4, 6, and 10 for group 3, group 1, and group 2,
respectively. As a result, for instance, the average rate of reduction
for propagated changes of all 11 applied refactorings are 9.09%,
7.67%, and 7.10% for group 3, group 1, and group 2, respectively.
In addition, when positing the total percentage of reduction for
propagated changes for the combination of the two approaches
(group 3) as 100%, then those for group 1 and group 2 are 85%
and 78%, respectively. It is also worth mentioning that in Columba,

Fig. 11. Change simulation for JGIT.

Table 5
Indicators of cost-effective refactorings: (1) Percentage of reduction for propagated changes. (2) Rate of reduction for propagated
changes for jEdit, Columba, and JGIT.

Percentage of reduction for propagated changes (%) Rate of reduction for propagated changes (%)

] of applied
refactoring

Dynamic + Static Static Dynamic] of applied
refactoring

Dynamic + Static Static Dynamic

jEdit
1 30 30 30 1 30 30 30
2 42.5 37.5 40 2 12.5 7.5 10
3 50 42.5 52.5 3 7.5 5 12.5
4 60 47.5 60 4 10 5 7.5
5 72.5 60 65 5 12.5 12.5 5
6 82.5 60 77.5 6 10 0 12.5
7 90 75 85 7 7.5 15 7.5
8 95 85 90 8 5 10 5
9 100 85 95 9 5 0 5
Average 69.17 58.06 66.11 Average 11.11 9.44 10.56

Columba
1 31.3 6.3 31.3 1 31.3 6.3 31.3
2 46.9 23.4 43.8 2 15.6 17.2 12.5
3 59.4 35.9 50.0 3 12.5 12.5 6.3
4 75.0 45.3 65.6 4 15.6 9.4 15.6
5 84.4 57.8 73.4 5 9.4 12.5 7.8
6 87.5 65.6 76.6 6 3.1 7.8 3.1
7 89.1 70.3 78.1 7 1.6 4.7 1.6
8 92.2 73.4 79.7 8 3.1 3.1 1.6
9 96.9 75.0 81.3 9 4.7 1.6 1.6
10 98.4 76.6 82.8 10 1.6 1.6 1.6
11 100.0 78.1 84.4 11 1.6 1.6 1.6
Average 78.27 55.26 67.90 Average 9.09 7.10 7.67

JGIT
1 9.46 9.46 2.23 1 9.46 9.46 2.23
2 14.33 14.33 3.01 2 4.87 4.87 0.78
3 18.88 18.74 12.48 3 4.55 4.41 9.47
4 28.71 21.57 21.43 4 9.83 2.83 8.95
5 48.70 23.79 43.74 5 19.99 2.22 22.31
6 51.53 27.78 45.55 6 2.83 3.99 1.81
7 57.98 30.98 51.30 7 6.45 3.20 5.75
8 60.76 40.21 51.95 8 2.78 9.23 0.65
9 81.26 63.96 52.50 9 20.50 23.75 0.55
10 92.72 75.05 56.63 10 11.46 11.09 4.13
11 93.60 77.50 61.54 11 0.88 2.45 4.91
12 100.00 82.24 61.54 12 6.40 4.74 0.00
Average 54.83 40.47 38.66 Average 8.33 6.85 5.13

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 981
the absolute scale of reduction for propagated changes is relatively
small, because there are not many revisions to be retrieved. Refer-
ring to the report period (in Table 3), we assume that the maturity
level of the development for Columba is relatively lower than jEdit,
and Columba may still be in the development process. In fact, jEdit
has been developed and maintained for over ten years. Further-

Table 6
Commonly found classes between the real changed classes and the extracted classes
as refactoring candidates for each approach using static information and approach
using dynamic information.

Changed Static \ Changed Dynamic \ Changed

Top % Class] Change] Class] Change] Class] Change]

jEdit
10.00% 7 67 6 60 7⁄ 67⁄

20.00% 16 110 7 64 10⁄ 79⁄

30.00% 27 143 9 70 12⁄ 85⁄

100.00% 72 207 19 82 21⁄ 99⁄

Columba
10.00% 27 458 9 220 14⁄ 269⁄

20.00% 55 624 13 241 15⁄ 275⁄

30.00% 79 788 16 251 17⁄ 282⁄

100.00% 265 993 22 260 24⁄ 292⁄

JGIT
10.00% 20 5039 9 2872 10⁄ 2899⁄

20.00% 50 7296 19 3709 22⁄ 3758⁄

30.00% 91 8754 27⁄ 3992⁄ 26 3938
100.00% 258 9773 44⁄ 4109⁄ 33 3998

Note: The asterisk (⁄) is appended to the results of better solutions (i.e., those in
which a greater number of the classes or a greater number of occurred changes in
those classes are commonly found).

982 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
more, the developers are much smaller, while the size of the pro-
gram is much bigger than jEdit’s; they may not have exerted as
much effort for the revisions as jEdit does.

For JGIT, as in Fig. 11a and 11b, group 1 reduces the number of
propagated changes faster than group 2 does, though only from the
fourth to the eighth applied refactorings. Even at the final solution,
the number of reduced propagated changes of group 1 is smaller
than that of group 2. As a result, for instance, the average rate of
reduction for propagated changes of the total of 12 applied refact-
orings are 8.33%, 5.13%, and 6.85% for group 3, the group 1, and
group 2, respectively. In addition, when positing the total percent-
age of reduction for propagated changes for combination of the
two approaches (group 3) as 100%, then those for group 1 and
group 2 are 62% and 82%, respectively.

As opposed to the results with jEdit and Columba, with JGIT,
group 1 does not outperform group 2. By analyzing the revision
history and source codes of JGIT, we found the following observa-
tions that can explain this result. JGIT is a distributed source ver-
sion control system and provides many special features for
working in a distributed environment with high speed. Since the
most common use of scenarios for using version control systems
are committing, pushing, cloning, or pulling a file into a repository,
we have mostly captured these normal scenarios when performing
dynamic profiling. However, real changes—which had occurred in
the examined revisions of the development history for JGIT—are re-
lated to developing and correcting errors of the algorithms that are
not frequently used but contain critical functions, and the com-
plexity of these algorithms is high. An example of such algorithms
Table 7
Top k ranking distance measures (K: Kendall’s tau; F: Spearman’s footrule [57]) between
approach using static information and approach using dynamic information.

Changed jEdit Columba

Static Dynamic Static

Top % K F K F K F

10.00% 68.5 69 53⁄ 52⁄ 397 207
20.00% 158 69.25 129.5⁄ 65.25⁄ 1000.5 712
30.00% 256.5 105 194⁄ 96⁄ 1785 1653
100.00% 1229 1329.25 1003.5⁄ 1196.25⁄ 15857 19824

Note: The asterisk (⁄) is appended to the results of better solutions (i.e., those with the
is packing; JGIT stores each newly created object as a separate
file, and this takes a great deal of space and is inefficient. Thus,
periodic packing of the repository is required to maintain space
efficiency, which requires very complex computation. For the rea-
sons stated above, in JGIT, group 1 may rarely identify refactorings
on those parts of the algorithms; thus, the percentage of reduction
for propagated changes and the rate of reduction for propagated
changes are rather small. However, the combination of the two ap-
proaches (group 3) still outperforms the approach using static
information alone (group 2). It is obvious that some of the refactor-
ing candidates—not identified in the approach using static infor-
mation (group 2) and only identified in the approach using
dynamic information (group 1)—contribute to improving main-
tainability even faster. Here, these two approaches are mutually
complementary; thus, it can be said that using the dynamic infor-
mation in addition to the static information helps to improve
maintainability even faster.

From the results presented above, we can conclude that, in
three subjects—jEdit, Columba, and JGIT—dynamic information is
helpful in identifying cost-effective refactorings that fast improve
maintainability; and, considering dynamic information in addition
to static information provides even more opportunities to identify
cost-effective refactorings because of the refactoring candidates
that are uniquely identified by the approach using dynamic infor-
mation only.
6.3.2. Hypothesis 2: Effect of dynamic information for extracting
refactoring candidates in frequently changed classes

For each subject, jEdit, Columba, and JGIT, the commonly found
classes (i.e., intersect set) of each approach using static information
and approach using dynamic information are represented in Ta-
ble 6. The intersect set is represented as (1) the number of the clas-
ses (Class]) and (2) the number of occurred changes in those
classes (Change]). The asterisk (⁄) is appended to the results of
better solutions (i.e., those in which a greater number of the classes
or a greater number of occurred changes in those classes are com-
monly found). For two subjects, jEdit and Columba, in the approach
using dynamic information (group 1), more classes—extracted as
refactoring candidates—are found in the classes where real
changes had occurred. For JGIT, in the approach using dynamic
information (group 1), more classes—extracted as refactoring can-
didates—are found only in the classes of top 10% and 20% most fre-
quently changed.

On the other hand, the two distance measures (K: Kendall’s tau,
F: Spearman’s footrule [57]) of the approach using static informa-
tion and the approach using dynamic information are represented
in Table 7. The distance measures count the number of pairwise
disagreements between two top k-ranked lists. Therefore, the lar-
ger the distance, the more dissimilar the two top k ranked lists
are; conversely, the smaller the distance, the more similar the
two top k-ranked lists are. The asterisk (⁄) is also appended to
the results of better solutions (i.e., those with the smaller distance
the real changed classes and the extracted classes as refactoring candidates for each

JGIT

Dynamic Static Dynamic

K F K F K F

258.5⁄ 177⁄ 1779.5 695 1284.5⁄ 449.25⁄

791⁄ 659⁄ 3494 1198.25 2702⁄ 1026⁄

1617.5⁄ 1520⁄ 4411.5⁄ 2099⁄ 5489.5 2199.25
15655.5⁄ 19328⁄ 26499⁄ 22752⁄ 29623 22974.25

smaller distance measures).

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 983
measures). Likewise the results in the commonly found classes, for
two subjects, jEdit and Columba, in the approach using dynamic
information (group 1), the ranked lists of classes—extracted as
refactoring candidates—are more similar to the ranked list of the
real changed classes. For JGIT, in the approach using dynamic infor-
mation (group 1), the ranked list of classes—extracted as refactor-
ing candidates—are more similar only to the ranked lists of the top
10% and 20% most frequently changed.

The results presented above in three subjects—jEdit, Columba,
and JGIT—show that dynamic information is helpful in extracting
refactoring candidates in the classes where real changes had oc-
curred. In addition, overall, the approach using dynamic informa-
tion even outperforms the approach using static information for
finding frequently changed classes. Even though the former ap-
proach is not always better than the latter approach, we find that
the correlation does exist between the frequently changed classes
and the classes of refactoring candidates extracted from the ap-
proach using dynamic information. The results offer promising
support for using dynamic information for extracting refactoring
candidates from highly-ranked frequently changed classes, and,
further, that using dynamic information in addition to static infor-
mation can be a great help for cost-effective refactoring
identification.

6.4. Threats to validity

We assume that the cost of each refactoring is the same; there-
fore the number of applied refactorings is regarded as the refactor-
ing cost (effort). However, the number of applied refactorings does
not actually reflect the effort required to apply them. For practical
use of our approach, several factors need to be considered. More
detailed discussion is provided in the next subsection.

The capability of identified refactorings for maintainability
improvement is assessed by using the change simulation method.
In the experiment, we obtained changes from the change history
for the input of the change impact analysis. For changes obtained
from the change history, it would be good to extract intentional
changes by excluding ripple effects—that the intentional changes
necessitated—among the obtained changes, perform change im-
pact analysis for those intentional changes, and compare the re-
sults of change impact analysis. However, discernment of
intentional changes among the obtained changes is not feasible,
because it is nontrivial to identify whether a change is an inten-
tional change or a ripple effect; therefore, we did not use the inten-
tional changes as the input of the change impact analysis. Thus, we
use the obtained changes (i.e., input as original changes), then per-
form change impact analysis to identify the potential conse-
quences (i.e., output as propagated changes) for those obtained
changes.

For implementing change impact analysis, the two-steps of di-
rect and indirect propagated methods are considered by using dif-
ferent weight values. The further step of indirect propagated
methods can be considered.

6.5. Discussion

Some of the researches addressed the method of estimating
refactoring cost; for example, Zibran and Roy [21] propose a refac-
toring effort model that takes into account several types of effort
needed to remove software code clones. To more accurately esti-
mate refactoring cost, we need to consider the effort needed to per-
form the activities—refactoring identification, refactoring
application, and refactoring maintenance—of the entire refactoring
process (explained in Section 3.1). For refactoring identification,
refactoring complexity (e.g., big or small for code modification, or
easy or difficult for understanding context) needs to be considered.
It is reasonable to expect that big refactorings—which consist of a
series of small refactorings—would require more effort to be ap-
plied than small refactorings would do, because they should affect
larger portion of source codes; and at the same time, impact of big
refactorings on maintainability improvement tends to be larger.
For instance, in the experiment—performed without considering
refactoring complexity—class-level refactorings (i.e., Collapse Class
Hierarchy refactorings) are selected in many cases than method-le-
vel refactorings (i.e., Move Method refactorings); because the im-
pact on maintainability improvement of class-level refactorings
tends to be larger than that of method-level refactorings. If the
refactoring complexity of the application is taken into account
for estimating refactoring cost, method-level refactorings may be
more selected. Refactoring complexity of the application can be
considered by dividing each refactoring into fine-grained (e.g.,
atomic-level) transformations and giving each a different weight.
For refactoring application, basically, if we can ensure that apply-
ing a refactoring on actual source codes is fully automated by a
tool, then the refactoring cost can be regarded as zero. However,
in practice, the application of refactorings may involve additional
costs such as the effort of relocating codes, especially when the
refactorings are complex. Refactoring inspection costs also need
to be considered, because it is a human who decides whether to
refactor or not. For instance, the developer or the maintainer needs
to take time to decide whether identified refactorings should be
applied or not. Even though the refactorings are beneficial to main-
tainability improvement, they could be rejected to be applied due
to the confliction with other design practices and principles. Final-
ly, for refactoring maintenance, the effort involved in testing the
refactored code and checking consistency with other software arti-
facts needs to be considered.

In the experiment, the main key to obtain a better outcome is
how strongly the frequently utilized parts are correlated with the
parts that actually have been changed and how much more refact-
orings are identified and applied in those parts. For instance, in jEd-
it and Columba, changes have occurred in the parts that are often
utilized; while in JGIT, change-occurred parts are not strongly cor-
related with the frequently used parts. By examining the changes
made to JGIT, we notice that development of system’s main func-
tionalities has almost been finished; and developers seem to focus
on perfective maintenance. It is reasonable that, in this case,
changes can be made to the places dealing with exceptional sce-
narios or containing functionalities utilized only by high-end users.
Even though the use of frequency is rather low, the importance or
complexity of developing such parts can be high. For this reason,
for JGIT, other predictors, such as structural complexity (e.g., class
size), may need to be additionally considered to identify better
cost-effective refactorings. Nevertheless, it is worth pointing out
that the dynamic information is the important factor for identify-
ing cost-effective refactorings, because the experimental results
show that, the combination of two approaches—the approach
using dynamic information and the approach of static approach—
still outperforms the approach using static information alone. We
discussed with senior developers—who work in IT industries over
ten years—for interpreting these experimental results. They sup-
port the arguments by providing the following explanations: the
system having intensive user interactions tends to be gradually
developed by actively accommodating users’ requests; thus,
changes are more likely to be occurred where users more utilize.
On the other hand, the system, which is algorithmic-based and
has rather less interactions with users, tends to be developed in
a way of completing each decomposed function; thus, changes
are not likely to be occurred where the development is completed.

We defined a total of 18 refactoring extraction rules. Given the
inherent limitation of the rule-based approach, the rules cannot be
complete. Further, more rules need to be developed and refined to

984 A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985
find better refactoring candidates. In addition, other methods of
finding refactoring candidates are needed. Using our rule-based
approach, for refactorings such as Extract Class and Extract Meth-
od, determining specific code blocks to be split in an automated
way is difficult.

While the dynamic profiling-based approach of refactoring
identification needs efforts of dynamic profiling in addition to
the approach of using static information only, the benefit of using
the dynamic profiling-based approach may outweigh the efforts of
dynamic profiling. In addition, the efforts of dynamic profiling are
manageable because dynamic profiling is done just once at the
beginning of the approach.
7. Conclusion and future work

In this paper, we provide the automated approach to identifying
cost-effective refactorings using dynamic information. The dy-
namic profiling technique is used to obtain dynamic dependencies
of entities (i.e., DMCs). Based on the DMCs, (1) the rules for reduc-
ing dependencies of entities are defined (for refactoring candidate
extraction) and (2) the maintainability evaluation function is
established (for refactoring candidate assessment). We have pro-
posed the framework for systematic refactoring identification to
enable automated refactoring. Three main activities are performed
to identify cost-effective refactorings as follows: (1) extracting
refactoring candidates in a way that reduces dependencies of enti-
ties of methods and classes using the refactoring candidate-extrac-
tion rules; (2) assessing those extracted refactoring candidates
using the maintainability evaluation function; and, finally, (3)
selecting the most cost-effective refactoring among the extracted
refactoring candidates. The procedure of refactoring identification
is iterated until no more refactoring candidates for improving
maintainability are found, and it then generates the sequence of
refactorings.

In the experiment, our approach has been evaluated on three
open-source projects—jEdit, Columba, and JGIT. In the first test,
we investigate whether dynamic information is helpful in identify-
ing cost-effective refactorings that fast improve maintainability.
The results show that dynamic information is helpful in identifying
cost-effective refactorings that fast improve maintainability; and
considering dynamic information in addition to static information
provides even more opportunities to identify cost-effective refact-
orings. In the second test, we investigate whether dynamic infor-
mation is helpful in extracting refactoring candidates in the
classes where real changes had frequently occurred, and the results
show that dynamic information is helpful in extracting refactoring
candidates in the classes where real changes had occurred. In addi-
tion, we find that the correlation does exist between the frequently
changed classes and the classes of refactoring candidates extracted
from the approach using dynamic information. The results support
the arguments that using dynamic information can be a great help
for cost-effective refactoring identification. From all these results,
we have come up with the conclusion that dynamic information
plays an important role (i.e., becomes a very good factor) in iden-
tifying cost-effective refactorings, especially for the system having
intensive user interactions (such as jEdit or Columba). For JGIT,
which is algorithmic-based and has rather less interactions with
users, additional predictors other than dynamic information may
help to better identify cost-effective refactorings.

As for future work, we plan to consider other types of refactor-
ings such as Extract Class. Furthermore, we plan to develop a meth-
od for selecting multiple refactorings. This is needed because it is
inefficient to select just the best refactoring in a one-by-one of
greedy manner for each iteration of refactoring identification, after
producing the tentatively refactored models by applying all the ex-
tracted refactoring candidates and evaluating those refactored
models. Therefore, we need to devise algorithms for (1) reducing
the search space by identifying independent sets of refactorings
and (2) searching the refactoring candidates effectively considering
dependency of application among them.

Acknowledgement

This work was partially supported by Defense Acquisition Pro-
gram Administration and Agency for Defense Development under
the contract.

References

[1] D. Parnas, Software aging, in: Proceedings of The 16th International Conference
on Software Engineering (ICSE94), IEEE Computer Society Press, 1994. pp. 279–
287.

[2] M. Fowler, K. Beck, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

[3] R. Robbes, D. Pollet, M. Lanza, Replaying ide interactions to evaluate and
improve change prediction approaches, in: 7th IEEE Working Conference on
Mining Software Repositories (MSR), 2010, IEEE, pp. 161–170.

[4] E. Arisholm, L. Briand, A. Føyen, Dynamic coupling measurement for object-
oriented software, IEEE Transactions on Software Engineering (2004) 491–506.

[5] A.-R. Han, S.-U. Jeon, D.-H. Bae, J.-E. Hong, Measuring behavioral dependency
for improving change-proneness prediction in uml-based design models, The
Journal of Systems & Software 83 (2010) 222–234.

[6] J. Musa, Operational profiles in software-reliability engineering,, IEEE Software
10 (1993) 14–32.

[7] M. Dmitriev, Selective profiling of java applications using dynamic bytecode
instrumentation, in: 2004 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, IEEE, 2004, pp. 141–150.

[8] jEdit, jEdit, 2011. <http://www.jedit.org/>.
[9] Columba, Columba, 2011. <http://sourceforge.net/projects/columba/>.

[10] JGIT, JGIT, 2011. <http://eclipse.org/jgit/>.
[11] D. Roberts, J. Brant, R. Johnson, A refactoring tool for smalltalk, Urbana 51

(1997) 61801.
[12] S. Ducasse, M. Lanza, S. Tichelaar, Moose: an extensible language-independent

environment for reengineering object-oriented systems, in: Proceedings of the
Second International Symposium on Constructing Software Engineering Tools
(CoSET 2000), Citeseer, 2000, pp. 1–7.

[13] C. Seguin, JRefactory, 2003. <http://jrefactory.sourceforge.net/
csrefactory.html>.

[14] JetBrains, IntelliJ IDEA, 2012. <http://www.jetbrains.com/idea/>.
[15] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss, Emf model

refactoring based on graph transformation concepts, Electronic
Communications of the EASST 3 (2007).

[16] J. Kerievsky, Refactoring to Patterns, Pearson Education, 2005.
[17] S. Demeyer, S. Ducasse, O. Nierstrasz, Object-Oriented Reengineering Patterns,

Morgan Kaufman, 2002.
[18] S. Jeon, J. Lee, D. Bae, An automated refactoring approach to design pattern-

based program transformations in java programs, in: Ninth Asia–Pacific
Software Engineering Conference, 2002, IEEE, 2002, pp. 337–345.

[19] S. Lee, G. Bae, H.S. Chae, D.-H. Bae, Y.R. Kwon, Automated scheduling for clone-
based refactoring using a competent GA, Software Practice & Experience 41
(2011) 521–550.

[20] Y. Higo, S. Kusumoto, K. Inoue, A metric-based approach to identifying
refactoring opportunities for merging code clones in a java software system,
Journal of Software Maintenance and Evolution: Research and Practice 20
(2008) 435–461.

[21] M. Zibran, C. Roy, Conflict-aware optimal scheduling of code clone refactoring:
a constraint programming approach, in: 2011 IEEE 19th International
Conference on Program Comprehension (ICPC), IEEE, 2011, pp. 266–269.

[22] M. Harman, Refactoring as testability transformation, in: 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), IEEE, 2011, pp. 414–421.

[23] P. Oman, J. Hagemeister, Metrics for assessing a software system’s
maintainability, in: Proceerdings of Conference on Software Maintenance,
1992, pp. 337–344.

[24] N. Tsantalis, A. Chatzigeorgiou, Ranking refactoring suggestions based on
historical volatility, in: 2011 15th European Conference on Software
Maintenance and Reengineering (CSMR), IEEE, 2011, pp. 25–34.

[25] F. Simon, F. Steinbruckner, C. Lewerentz, Metrics based refactoring, in: Fifth
European Conference on Software Maintenance and Reengineering, 2001. IEEE,
2001, pp. 30–38.

[26] N. Tsantalis, A. Chatzigeorgiou, Chatzigeorgiou, identification of move method
refactoring opportunities, IEEE Transactions on Software Engineering 35
(2009) 347–367.

[27] O. Seng, J. Stammel, D. Burkhart, Search-based determination of refactorings
for improving the class structure of object-oriented systems, in: Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation, 2006, p.
1916.

http://www.jedit.org/
http://sourceforge.net/projects/columba/
http://eclipse.org/jgit/
http://jrefactory.sourceforge.net/csrefactory.html
http://jrefactory.sourceforge.net/csrefactory.html
http://www.jetbrains.com/idea/

A.-R. Han, D.-H. Bae / Information and Software Technology 55 (2013) 966–985 985
[28] M. Harman, L. Tratt, Pareto optimal search based refactoring at the design
level, in: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, ACM, 2007, pp. 1106–1113.

[29] H. Liu, Z. Ma, W. Shao, Z. Niu, Schedule of bad smell detection and resolution: a
new way to save effort, IEEE Transactions on Software Engineering (2012). 1–
1.

[30] T. Mens, G. Taentzer, O. Runge, Analysing refactoring dependencies using
graph transformation, Software and Systems Modeling (2007).

[31] B. Du Bois, S. Demeyer, J. Verelst, Refactoring–improving coupling and
cohesion of existing code, in: Proceedings of the 11th Working Conference
on Reverse Engineering, IEEE Computer Society, Washington, DC, USA, 2004,
pp. 144–151.

[32] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, A quantitative evaluation of
maintainability enhancement by refactoring, in: Proceedings. International
Conference on Software Maintenance, 2002, pp. 576–585.

[33] L. Tahvildari, K. Kontogiannis, A metric-based approach to enhance design
quality through meta-pattern transformations, in: Proc. European Conf.
Software Maintenance and Reeng., 2003, pp. 183–192.

[34] L. Zhao, J. Hayes, Predicting classes in need of refactoring: An application of
static metrics, in: Proceedings of the Workshop on Predictive Models of
Software Engineering (PROMISE), Associated with ICSM2006, Citeseer, 2006,
pp. 1–5.

[35] M. O’Keeffe, M.Ó. Cinnéide, Search-based refactoring for software
maintenance, The Journal of Systems & Software 81 (2008) 502–516.

[36] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Transactions on
Software Engineering 30 (2004) 126–139.

[37] G. Arévalo, Understanding behavioral dependencies in class hierarchies using
concept analysis, Proceedings of LMO 3 (2003) 47–59.

[38] OMG, UML 2.4 Superstructure Specification (formal/2010-05-05) edition,
2010. <http://www.omg.org/spec/UML/2.4/Superstructure/PDF/>.

[39] V. Garousi, L. Briand, Y. Labiche, Analysis and visualization of behavioral
dependencies among distributed objects based on uml models, Model Driven
Engineering Languages and Systems (2006) 365–379.

[40] W. Hwu, P. Chang, Achieving high instruction cache performance with an
optimizing compiler, in: ACM SIGARCH Computer Architecture News, ACM,
1989. pp. 242–251.

[41] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Sreedhar,
H. Srinivasan, J. Whaley, The jalapeno dynamic optimizing compiler for java,
in: Proceedings of the ACM 1999 conference on Java Grande, ACM, 1999. pp.
129–141.
[42] A. Srivastava, A. Eustace, Atom: A system for building customized program
analysis tools, ACM SIGPLAN Notices 39 (2004) 528–539.

[43] P.V. Gorp, H. Stenten, T. Mens, S. Demeyer, Towards automating source-
consistent uml refactorings, Lecture Notes in Computer Science (2003) 144–
158.

[44] W.F. Opdyke, Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Framework, Ph.D. Thesis, University of Illinois at
Urbana—Champaign, 1992.

[45] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering,
Prentice Hall PTR, 2002.

[46] B.D. Bois, S. Demeyer, J. Verelst, Refactoring–improving coupling and cohesion
of existing code, in: Working Conference on Reverse Engineering, 2004, pp.
144–151.

[47] F. Bachmann, L. Bass, R. Nord, Modifiability Tactics, Technical Report, 2007.
[48] O. Seng, M. Bauer, M. Biehl, G. Pache, Search-based improvement of subsystem

decompositions, in: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, ACM, pp. 1045–1051.

[49] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, E. Gansner, Using automatic
clustering to produce high-level system organizations of source code, in: 6th
International Workshop on Program Comprehension, 1998, IWPC’98, IEEE, pp.
45–52.

[50] C. Bonja, E. Kidanmariam, Metrics for class cohesion and similarity between
methods, in: Proceedings of the 44th Annual Southeast Regional Conference,
2006, pp. 91–95.

[51] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (1994) 476–493.

[52] J. Bansiya, L. Etzkorn, C. Davis, W. Li, A class cohesion metric for object-
oriented designs, journal of object-oriented program, Journal of Object-
Oriented Program 11 (1999) 47–52.

[53] W. Li, S. Henry, Object-oriented metrics that predict maintainability, Journal of
Systems and Software 23 (1993) 111–122.

[54] L. Briand, J. Daly, J. Wust, A unified framework for coupling measurement in
object-oriented systems, IEEE Transactions on Software Engineering 25 (1999)
91–121.

[55] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity,
Prentice-Hall Inc., Upper Saddle River, NJ, USA, 1996.

[56] A.-R. Han, ARTool, 2011. <http://github.com/igsong/ARTOOL>.
[57] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, in: Proceedings of the

Fourteenth Annual ACM–SIAM Symposium on Discrete Algorithms, Society for
Industrial and Applied Mathematics, 2003, pp. 28–36.

http://www.omg.org/spec/UML/2.4/Superstructure/PDF/
http://github.com/igsong/ARTOOL

	Dynamic profiling-based approach to identifying cost-effective refactorings
	1 Introduction
	2 Related work
	2.1 Metric-based refactoring
	2.2 Search-based refactoring

	3 Overview of our approach
	3.1 Framework for systematic refactoring identification
	3.2 Goal of refactoring and used refactorings in our approach
	3.3 Dynamic profiling-based approach
	3.3.1 Dynamic profiling
	3.3.2 Dynamic method call (DMC)

	3.4 Overview of our approach for cost-effective refactoring identification

	4 Refactoring candidate extraction, assessment, and selection
	4.1 Refactoring candidate extraction
	4.1.1 Elements of refactoring-candidate extraction rule
	4.1.1.1 Scoring function
	4.1.1.2 Max function
	4.1.1.3 Refactoring

	4.1.2 Design of refactoring-candidate extraction rule

	4.2 Refactoring candidate assessment
	4.2.1 Maintainability evaluation function

	4.3 Refactoring selection

	5 Tool implementation
	5.1 Overall tool architecture
	5.2 Abstract Object Model (AOM)

	6 Evaluation
	6.1 Evaluation subjects and data processing
	6.1.1 Performing the dynamic profiling
	6.1.2 Extracting changes

	6.2 Evaluation method
	6.2.1 Hypothesis 1: Effect of dynamic information for cost-effective refactoring identification
	6.2.2 Hypothesis 2: Effect of dynamic information for extracting refactoring candidates in frequently changed classes

	6.3 Results
	6.3.1 Hypothesis 1: Effect of dynamic information for cost-effective refactoring identification
	6.3.2 Hypothesis 2: Effect of dynamic information for extracting refactoring candidates in frequently changed classes

	6.4 Threats to validity
	6.5 Discussion

	7 Conclusion and future work
	Acknowledgement
	References

