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Context: Application of a refactoring operation creates a new set of dependency in the revised design as
well as a new set of further refactoring candidates. In the studies of stepwise refactoring recommendation
approaches, applying one refactoring at a time has been used, but is inefficient because the identification
of the best candidate in each iteration of refactoring identification process is computation-intensive.
Therefore, it is desirable to accurately identify multiple and independent candidates to enhance efficiency
of refactoring process.
Objective: We propose an automated approach to identify multiple refactorings that can be applied
simultaneously to maximize the maintainability improvement of software. Our approach can attain
the same degree of maintainability enhancement as the method of the refactoring identification of the
single best one, but in fewer iterations (lower computation cost).
Method: The concept of maximal independent set (MIS) enables us to identify multiple refactoring oper-
ations that can be applied simultaneously. Each MIS contains a group of refactoring candidates that nei-
ther affect (i.e., enable or disable) nor influence maintainability on each other. Refactoring effect delta
table quantifies the degree of maintainability improvement each elementary candidate. For each iteration
of the refactoring identification process, multiple refactorings that best improve maintainability are
selected among sets of refactoring candidates (MISs).
Results: We demonstrate the effectiveness and efficiency of the proposed approach by simulating the
refactoring operations on several large-scale open source projects such as jEdit, Columba, and JGit. The
results show that our proposed approach can improve maintainability by the same degree or to a better
extent than the competing method, choosing one refactoring candidate at a time, in a significantly smal-
ler number of iterations. Thus, applying multiple refactorings at a time is both effective and efficient.
Conclusion: Our proposed approach helps improve the maintainability as well as the productivity of
refactoring identification.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

While refactoring has been extensively researched and is fre-
quently used in the industry, there still exists a gap between its
theory and practice. In the industry, refactoring is largely a manual
activity that relies heavily on a software developer’s expertise.
However, research community seeks to automate the refactoring
process.

The major technical challenge in automated refactoring is the
selection of the sequence of refactorings to perform. Each
refactoring depends on the preceding applied refactoring. Thus,
the application of a refactoring changes the system structure and
may affect the applicability of other refactoring candidates or influ-
ence their effects on account of design quality factors, such as
maintainability. Such phenomenon is known in evolutionary com-
putation as epistasis [1,2]. Several approaches have been suggested
to identify refactoring sequences to be applied. For example, aim of
search-based techniques (e.g., [3–7]) is to determine the optimal
refactoring sequence. Stepwise selection approach, on the other
hand, attempts to find the most promising candidate in each iter-
ation in greedy manner [8–10]. In the stepwise selection approach,
the pool of refactoring candidates has to be re-computed at each
iteration after the refactoring has been applied. However, it is inef-
ficient and requires heavy computational load.
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In this paper, we propose an automated technique for identify-
ing multiple refactorings that can be applied simultaneously by
analyzing the dependencies of the refactorings and quantifying
the degree of improvement in maintainability delivered by each
elementary refactoring candidate. A brief procedure of the pro-
posed approach is as follows. First, an object-oriented program is
transformed into a design model that captures the entities (e.g.,
methods and attributes) and their dependencies. In order to evalu-
ate the effect on maintainability of the operation of each elemen-
tary refactoring, a refactoring effect delta table is derived. In this
table, the dependencies of entities across classes are used to quan-
tify the degree of improvement in maintainability. Following this,
using the concept of a maximal independent set (MIS) from graph
theory [11–13], we group entities into MISs. Entities included in
each set are independent of one another and are transformed into
a group of refactoring candidates. Thus, refactoring operations can
be applied simultaneously. Using the refactoring effect delta table,
each group of refactoring candidates is assessed by accumulating
the effect on maintainability of each elementary refactoring.
Finally, the group of refactorings (i.e., multiple refactorings) that
best improves maintainability is applied, the design model is
updated and the refactoring effect delta table is calculated again.
The process is repeated until no more refactoring candidates that
improve maintainability of software can be found.

We apply our proposed approach to three open-source projects,
jEdit [14], Columba [15], and JGit [16]. Experiments reveal that our
approach helps increase the effectiveness and efficiency of the
refactoring identification process by improving maintainability,
while requiring smaller computational load than the approach
selecting one refactoring candidate at a time.

Our proposed technique does not refactor an object-oriented
program in a fully automated manner, but automatically identifies
a set of refactoring candidates that can be safely applied simulta-
neously for delivering the maximum improvement on maintain-
ability. The proposed method suggests refactoring candidates in
ranked order of likelihood for maintainability improvement, and
the software developer must make the final decision on whether
or not to apply the suggested refactorings: even though the recom-
mended refactorings are beneficial from a maintainability perspec-
tive, they might be rejected due to other factors.

We use Move Method refactoring to illustrate our approach. The
application of each Move Method refactoring does not rule out the
applicability of other refactoring candidates, but influences their
effects on maintainability. The proposed method can be extended
to big refactorings as well, once they are broken down to elemen-
tary-level refactorings (e.g., Move Method or Move Field refactor-
ings) and duplications (e.g., conflicts) [17] and the dependencies
among them are analyzed. In this paper, we do not consider Move
Field refactoring, moving attributes (i.e., fields) from one class to
another. We agree with the opinion [8] that fields are strongly con-
ceptually bound to the classes in which they are initially placed,
and are less likely to change than methods once assigned to a class.

The rest of the paper is organized as follows: Section 2 contains
a discussion of related studies. Section 3 explains the overview of
our proposed approach and the detailed methods for each proce-
dure. In Section 4, we present the experiment to evaluate the pro-
posed approach and discuss the results. Finally, we conclude and
discuss avenues for future research in Section 5.

2. Related work

Many researchers have studied the methods for supporting
automated refactoring process such as finding and evaluating
refactoring candidates. Algorithms are developed to find refactor-
ing candidates with the opportunities of applying design patterns
[18–20], removing code clones [3,21,4,22] and improving code
quality, such as testability [23] and maintainability. To evaluate
the design of the refactored code, design quality evaluation mod-
els, such as the Quality Model for Object-Oriented Design
(QMOOD) [3], and a special metric, such as historical volatility
[24], are devised.

However, little research has been devoted to the selection pro-
cedure for refactorings to be applied from among the available can-
didates. In the following subsections, we present the studies that
address issues related to refactoring selection.

2.1. Refactoring sequence determination

From the perspective of scheduling refactoring candidates and
determining a sequence of refactorings to be applied, there have
been two lines of study for automating the refactoring identifica-
tion process: stepwise selection approach and search-based
refactoring.

In refactoring identification using a stepwise selection method
[8–10], the refactoring that best improves maintainability is
selected in a stepwise manner among many of the extracted refac-
toring candidates. The entire refactoring identification process is
repeated by re-extracting and re-assessing refactoring candidates.
The stepwise approach offers the advantage of taking into account
the changing system. Thus, complex dependencies among refactor-
ings need not be considered, and newly created refactoring candi-
dates can be taken into account. However, the stepwise approach
can be inefficient as it selects only one refactoring for each itera-
tion, even after assessing a large number of refactoring candidates.

Nonetheless, selecting multiple refactorings at a time by simu-
lating the application of possible refactoring candidates that may
be available after performing n more iterations (i.e., n-further
steps) and by deferring the selection is difficult because the impact
of a large number of refactoring candidates needs to be assessed.
For instance, if the average number of available refactoring candi-
dates (in each iteration of refactoring identification process) is m
and the number of refactorings in a sequence is n (assuming that
there is no repetition of refactoring candidates), the number of
refactoring sequences that need to be examined is mn. As the num-
ber of refactoring candidates increases, the number of possible
refactoring sequences increases exponentially. Therefore, schedul-
ing refactorings (i.e., selecting multiple refactorings at a time) by
investigating all possible refactoring candidates exhaustively may
become impossible (NP-hard).

In studies on search-based refactoring [25,6,3,26,5,4,7],
researchers try to find an optimal (near-optimum) sequence of
refactoring applications using search techniques. Lee et al. [3]
and Seng et al. [26] use genetic algorithms to generate a sequence
of refactorings to be applied to obtain an optimal system in terms
of the employed fitness function. However, Seng et al. [26] do not
take into account the fact that the application of a refactoring may
create new refactoring candidates not originally present in the ini-
tial system. Moreover, some of the generated sequences of refact-
orings may not be feasible to be applied because of dependencies
among refactoring candidates: applying one refactoring may con-
flict with the application of other refactorings. Seng et al. [26] do
not perform a feasibility check on generated sequences of refactor-
ings, and this may come at the additional cost of repairing. Lee
et al. [3] try to resolve the refactoring-conflict problem by repairing
infeasible sequences of refactorings that are randomly generated
without regard for refactoring conflicts. However, it seems time
consuming to reorder these sequences after generating them.

To generate a feasible sequence of refactorings considering con-
flicts and dependencies among refactoring candidates, Zibran and
Roy [5,4,7] apply constraint programming (CP) techniques to the
scheduling of code clone refactorings. First, they introduce an effort
model for estimating developer’s effort required to refactor code
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clones in procedural or object-oriented programs. Then, taking into
account the effort model and a wide variety of possible hard and
soft constraints, they formulate the scheduling of code clone
refactorings as a constraint satisfaction optimization problem
(CSOP) and solve it by applying CP techniques that aim to maxi-
mize benefits (measured in terms of changes in code/design qual-
ity metrics) while minimizing refactoring efforts. They also address
the limitations of using genetic algorithms in optimization prob-
lems. They point out that genetic algorithms (1) do not seem to
work well for CSOPs, since the core operations of genetic algo-
rithms are based on random selection, which does not guarantee
constraint satisfaction or optimization and (2) they are by nature
time consuming and memory-intensive.

Our goal in this paper is not to find an optimal sequence of
refactorings. In our approach, the sequence of multiple refactorings
is generated after the termination of iterating the refactoring iden-
tification process. For instance, for each iteration, multiple refact-
orings that can be applied simultaneously to maximally improve
maintainability are selected in a stepwise manner, then the entire
process is repeated by re-identifying and re-evaluating refactoring
candidates. By using this method, our approach takes the advan-
tage of changing system by using the stepwise selection approach;
and at the same time, compared to the approach of selecting only
the best refactoring [8–10], our approach is more efficient in
computation.
2.2. Refactoring dependency analysis

When selecting refactorings from available candidates, refactor-
ing dependencies among them need to be considered to maximize
maintainability. Mens et al. [17] represent refactorings as graph
transformations and propose the techniques of critical pair analy-
sis and sequential dependency analysis to detect dependencies
among refactorings. Using the results of this analysis can help
the developer make an informed decision about the most suitable
refactoring in a given context. In a similar manner, Qayum and
Heckel [27] represent the system using a graph model and the
refactoring steps as graph transformation rules. The dependency
information, which is derived from the analysis of graph transfor-
mations, is then used to express the problem as an instance of the
optimization problem. Zibran and Roy [4] argue that the applica-
tion of a subset of refactoring from a set of applicable refactoring
activities may result in distinguishable impact on overall code
quality. Moreover, there may be sequential dependencies and con-
flicts among the refactoring activities. Hence, they insist, it is nec-
essary that a subset of non-conflicting refactoring activities from
all refactoring candidates be selected and ordered (for application)
such that the quality of the code base is maximized while the
required effort is minimized.

In considering refactoring dependencies, the above-mentioned
studies focus on applicability analyses or potential conflict analy-
ses to determine whether the application of a refactoring changes
or deletes the elements required for the application of other refac-
toring candidates. However, even though refactorings do not
directly affect one another, the application of one refactoring
may influence the degree to which another can subsequently
improve maintainability of the software. The refactoring candi-
dates are grouped into MISs in our proposed method according
to the effect of their mutual dependencies on the system’s main-
tainability. Thus, we can be assured that refactoring candidates
grouped into the same MIS do not influence one another’s effect
on the maintainability of the software. The application of one Move
Method refactoring, which is used in our paper, does not affect that
of other Move Method refactoring candidates. Hence, we do not
perform an applicability analysis.
3. Proposed approach

Fig. 1 shows our proposed refactoring identification process for
identifying multiple refactorings that can be applied simultaneously.
The input is the source code of an objected-oriented program.

First, the object-oriented program is transformed into an
abstracted initial design model. In the abstracted design model,
important entities (methods and attributes) and their dependen-
cies are captured. To evaluate the effect of each elementary refac-
toring on maintainability, a refactoring effect delta table is derived
from the design model (Section 3.1).

Following this, entities that are not interdependent are grouped
into the same MIS (Section 3.2). By referring to the refactoring effect
delta table, the methods involved in each MIS are then transformed
into a group of refactoring candidates. Then, using the refactoring
effect delta table, the accumulated values of the delta of maintain-
ability for each group of refactoring candidates are sorted in order
of expected degree of maintainability improvement.

Finally, a group of independent refactorings that best improve
maintainability is applied followed by updates on design model
as well as calculation of refactoring effect delta table. The precon-
ditions that should be satisfied for a Move Method refactoring are
formulated using rules reported in [8,28,29]. They include the fol-
lowings: method to be moved should have one-to-one relationship
with the target class; target class should not inherit a method hav-
ing the same signature as the moved method; method to be moved
should not override an inherited method in its original class; and
method to be moved should not reference member variables of
its original class. Before selecting a refactoring to be applied, the
preconditions are checked to ensure behavior preservation.

The identification procedure for multiple refactorings is
repeated until no more refactoring candidates that can improve
maintainability can be found (Section 3.3). The output is a
sequence of groups of refactorings, which are the selected and
logged results obtained from each refactoring identification
process.

3.1. Obtaining design model and refactoring effect delta table

Our goal for refactoring is to improve maintainability for the
design of the object-oriented software. We measure maintainabil-
ity based on the following concept. In object-oriented software,
high cohesion and low coupling have been accepted as important
factors for good software design quality in terms of maintenance
[30]. Cohesion corresponds to the degree to which entities of a
class belong together, and coupling refers to the strength of
dependency from one class to another. For this reason, the num-
ber of intra-dependencies that entities belonging to a class (inner
entities) have with the ones of the class itself should be as large
as possible (high cohesion). At the same time, the number of
inter-dependencies that entities of a given class have with the
ones of other classes (outer entities) should be as small as possi-
ble (low coupling).

To this end, maintainability is quantified based on the number of
inter-dependencies that exist between entities across classes in a
system. Let n be an entity (method or attribute) of a system, c be
a class of the system, and D denotes the set of dependencies
existing in the system; and the number of inter-dependencies of
entities is represented as follows:
X

d2D

ðni;njÞ 2 D; where ni 2 cx; nj 2 cy; and cx – cy:

This number naturally represents the lack of degree of intra-depen-
dency among entities of the same class (lack of cohesion) and, at the
same time, the degree of inter-dependency among entities of differ-
ent classes (coupling). Thus, it can be said that as the number of
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inter-dependencies gets decreases, the maintainability of the
system improves. Consequently, the fitness function (used for refac-
toring selection criteria) is designed to be minimized by reducing
this number for improving maintainability.

3.1.1. Design model
The design model captures important entities and their depen-

dencies affecting maintainability, and is in the form of a graph. The
initial design model GR = (NR; ER) is defined as follows.

� NR = {methods, attributes}.
� ER = {method_calls(method m1, method m2),
attribute_accesses1(method m1, attribute a1),
attribute_accesses2(method m1, method m2)}.

The nodes (NR) indicate the entities of methods and attributes.
The node contains class membership information. The edges (ER)
indicate the dependencies between entities. By moving methods,
we aim to improve maintainability, which reduces the dependen-
cies between the entities (in terms of low coupling and high cohe-
sion). Thus, the dependencies are captured when the entities of
those dependencies are preferably located in the same class
(referred from the object-oriented design heuristics [31]) in order
to improve maintainability.

To this end, an edge is added between the entities when (1) a
method calls the other method (method_calls), (2) a method acces-
ses an attribute (attribute_accesses1), and (3) two methods access
the same attribute (attribute_accesses2). The direction of the edges
is not differentiated because maintainability is measured in terms
of the number of inter-dependencies among entities across classes
in a system. Thus, for the edges of attribute_accesses2(method m1,
method m2), an edge is added in any direction between two
methods.
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3.1.2. Refactoring effect delta table
A refactoring effect delta table is derived to quantify the degree

of maintainability improvement after the application for each ele-
mentary refactoring candidate. In this table, the row elements indi-
cate the moving methods and attributes while the column
elements indicate the target classes. Each cell in the refactoring
effect delta table indicates a Move Method refactoring candidate
(row: moving method, column: target class). The value of each cell
of the table indicates the effect of a refactoring candidate on main-
tainability (i.e., delta (D) of maintainability for the refactoring can-
didate), and it can be obtained by the difference of the number of
the inter-dependencies after applying the refactoring candidate
from the current design model (i.e., before applying the refactoring
candidate). The refactoring candidate that reduces the number of
the inter-dependencies at the greatest degree is the one that best
improves maintainability.

The refactoring effect delta table is calculated based on the
design model as follows. The value of each cell is obtained by
adding the number of potentially increasing dependencies
(which were intra-dependencies within classes) and the number
of decreasing dependencies (which were inter-dependencies
across classes) when moving an entity (row) to a class
(column).

For example, in design model n of Fig. 2(a), the system consists
of four classes and each class contains methods A = {m2, m6, m7

m8}, B = {m1, m3}, C = {m4}, and D = {m5 m9}. Based on the design
model, the refactoring effect delta table is calculated as in
Fig. 2(c). Let MM(method m, class c) denote a Move Method
refactoring (moving method m to target class c) in each cell. Let
Dn[MM(method m, class c)] denote the delta of maintainability
of the refactoring (i.e., moving method m to class c) for design
model n. By using these notations, the value of the refactoring,
for example MM(m3, A), in the refactoring effect delta table is
as follows: Dn[MM(m3, A)] = �3. In other words, the refactoring
carried out in moving method m3 (located in class B) to target
class A reduces the number of system’s inter-dependencies by
as much as �3. This change in the value of the systems
maintainability is calculated by adding the number of decreasing
dependencies (�4) and the number of potentially increasing
dependencies (+1) across class A and class B. The decreasing
dependencies are (m7, m3), (m6, m3), (m8, m3) and (m2, m3),
whereas the increasing dependency is (m3, m1).

Application of a chosen refactoring may alter the delta value on
maintainability of other refactoring candidates even though they
remain enabled. For example, after MM(m3, A) is applied, the val-
ues of the delta of maintainability change from Fig. 2(c) to (d). The
shaded cells in Fig. 2(d) represent the refactorings of which the val-
ues of the delta of maintainability are changed from Fig. 2(c). Thus,
for example, the expected effect of MM(m3, C) is changed from zero
to three. On the other hand, the same operation has no effect on
Move Method refactorings of m5 and m9 because they are indepen-
dent to m3. Such property allows simultaneous application of mul-
tiple refactorings.

3.2. Calculating MISs

The definition of an MIS is explained as follows. Given a graph
G = (V ; E), an independent set is a set of vertices S # V such that
if u; v 2 S, then (u;vÞ R E. In short, an independent set is a set of
vertices in G such that no two vertices in the set are adjacent
(i.e., connected by an edge). An MIS is an independent set to
which no more vertices can be added without violating the inde-
pendence property. In short, an MIS is an independent set that is
not a subset of any other independent set. A maximum
independent set is an independent set with the maximum cardi-
nality among all independent sets of G. Finding an MIS is trivial
in a sequential algorithm. For a graph G, randomly pick a node
and add it to the independent set (I), and remove the node and
the associated nodes with their edges. This process is repeated
until all nodes are removed, and the resulting set (I) will be an
MIS of G. On the contrary, computing a maximum independent
set is a notoriously difficult problem. It is equivalent to a
maximum clique on a complementary graph. Both problems are
NP-hard. Therefore, finding all existing MISs, the same problem
for finding the maximum independent set, is also an NP-hard
problem.

For the reason stated above, we use a heuristic to find MISs
that is scalable to programs of large sizes. We try to find the
MISs, each of which has as many independent entities as possible
(which are later transformed into elementary refactorings). This
is because the more entities there are in an MIS (i.e., the more
refactorings that are transformed from among the entities of
the MIS), the larger the expected maintainability improvement.
For this, we first decompose the entities of the design model into
independent sets by removing the nodes and the edges associ-
ated with them in order of the number of dependencies of each.
Each removed node becomes an independent set, and nodes that
come to have no edges (by the removal of the node and its asso-
ciated edges) are added to an independent set as well. We then
combine the independent sets and obtain MISs. In this way, it
is highly likely that we will find independent sets that already
have a large number of entities. By reducing the number of can-
didate independent sets (in short, by converting the unit of the
independent sets from entities to groups of entities), we can
obtain MISs more quickly than the method of finding MISs from
entities.

Algorithm 1. getIndependentSet

var N = a set of nodes, E = a set of edges

such that ðn1;n2Þ 2 E ?n1, n2 2 N
begin

while N –; do

M :¼ findMaxDependencyNode(N, E)
E :¼ {ðn1;n2Þ jn1 –M, n2 –M, ðn1;n2Þ 2E}
N :¼ N n fO :¼ findDanglingNodesðN; EÞ
S :¼ S [ ffMg;Og

od

print S
where

funct findMaxDependencyNode(N, E) „

MaxDepCount :¼ �1
M = undefined

for n 2N do

D :¼ fðn1;n2Þ j n1 ¼ n or n2 ¼ n; ðn1;n2Þ 2 Eg
if jDj > MaxDepCount then MaxDepCount :¼ jDj, M :¼ n fi

od

return M
end

funct findDanglingNodes(N, E) „

O :¼ {}
for n 2N do

D :¼ {ðn1;n2Þ jn1 = n or n2 = n, ðn1;n2Þ 2E}
if jD j== 0 then O :¼ O [ {n} fi

od

return O
end



58 A.-R. Han et al. / Information and Software Technology 59 (2015) 53–66
Algorithm 2. calculateMaximalIndependentSet

var S = a set of IS

begin

SMIS = ;
while S –; do

ISmax = maxDep(S)
MIScur = {ISmax}
for IS1 2 S do

if ISmax does not have dependencies with IS1

then MIScur :¼ MIScur [ {IS1}
fi

od

SMIS :¼ SMIS [ fMIScurg
od

print SMIS

where

funct maxDep(S) „

MaxDepCount :¼ �1
M = undefined

for IS1 2 S do

D :¼ 0
for IS2 2 S do

if IS1 has dependencies with IS2 then D :¼ D + 1 fi

od

if jDj > MaxDepCount then MaxDepCount :¼ jDj, M :¼ n fi

od

return M
end

We calculate MISs by applying the above-mentioned heuristic.
The algorithms for decomposing into independent sets and com-
puting MISs are specified in Algorithm 1 and 2, respectively. The
complexity of the algorithms are O(n3).

First, the entities of the design model are decomposed into
independent sets (ISs). Fig. 3 provides an illustrative example of
the decomposition of entities of the design model into independent
sets. In the initial design model (Fig. 3(a)), since m3 has the largest
number of dependencies, it is removed first and added into IS1

(Fig. 3(b)). The edges associated with m3 are removed as well
(Fig. 3(c)). Therefore, the methods (m1, m4, m6, m7, and m8) have
no edges. These methods are added into IS2 (Fig. 3(d)). By repeating
this procedure, we obtain the following: IS1 = {m3}, IS2 = {m1, m4,
m6, m7, m8}, IS3 = {m5}, IS4 = {m9}, and IS5 = {m2}.

The dependency relations among these independent sets are
then obtained. Based on the dependencies among entities in each
set, the dependencies between and among independent sets can
be obtained. The dependency among entities indicates a relation
on the design model GR ¼ ðNR; ERÞ, such that two nodes (entities)
n1;n2 2 NR and the edge (dependency) ðn1;n2Þ 2 ER. We denote
the dependency relation between entities, say n1 and n2, as
n1 () n2. Then, there exists a dependency between two indepen-
dent sets, say ISx and ISy, such that n1 2 ISx, n2 2 ISy, and n1 () n2.
We denote the dependency relation between the independent sets
as ISx $ ISy. For example, a dependency relation exists between
independent sets IS1 and IS2 in Fig. 3 because an entity in each inde-
pendent set (m3 2 IS1 and m4 2 IS2) has the dependency relation m3

() m4. The results are as follows: IS1 () IS2; IS1 () IS5,
IS3 () IS4, IS3 () IS5, and IS4 () IS5.

Following this, each pair of independent sets is combined
(united), unless the sets in question do not have a dependency rela-
tion. For instance, out of 5C2 = 5� 4/ 2 = 10 combinations of pairs of
independent sets, five pairs have dependency relations. Thus, we
combine the remaining five pairs of independent sets as follows:
IS6 = IS1 [ IS3, IS7 = IS1 [ IS4, IS8 = IS2 [ IS3, IS9 = IS2 [ IS4, and IS10

= IS2 [ IS5. The combined independent sets can be united with other
combined independent sets unless they do not have any depen-
dency relations. The combined independent sets in this example
cannot be united any further. Consequently, the MISs of entities
are obtained as follows: MIS1 = {m3, m5}, MIS2 = {m3, m9}, MIS3 =
{m1, m4, m6, m7, m8, m5}, MIS4 = {m1, m4, m6, m7, m8, m9}, and
MIS5 = {m1, m4, m6, m7, m8, m2}.

Since we consider only Move Method refactoring, as opposed to
Move Field refactoring, MISs include only the methods. Excluding
the attributes from the MISs does not mean that the attributes
are disregarded for checking the preconditions to ensure behavior
preservation, constructing the design model, or calculating the
refactoring effect delta table.
3.3. Selecting multiple refactorings

In the first step, a method in each MIS is instantiated into the
specific refactoring designating the class to which the method
moves. Using the refactoring effect delta table, each method m in
an MIS is mapped into the Move Method refactoring that has the
largest maintainability improvement among all available Move
Method refactorings (method m, class c), where c – owner class
of method m and c 2 classes in the system. If there are no Move
Method refactorings that improve the system’s maintainability
(i.e., that reduce the number of inter-dependencies), we do not
assign the refactoring and let the method stay in the same class
(i.e., we do not move it). In short, only moving methods that
improve the systems maintainability are valid.

For example, in Fig. 4, m3 in MIS2 is mapped to MM(m3, A). This
is because among four refactorings (i.e., MM(m3, A) = �3, MM(m3,
B) = ‘–’, MM(m3, C) = 0, and MM(m3, D) = 1), MM(m3, A) reduces the
number of inter-dependencies to the greatest degree. The value of
the delta of maintainability of MM(m3, C) is zero because moving
m3, which was located in class B, to class C reduces the dependency
(between methods m3 and m4) while increasing the dependency
(between methods m3 and m1). In the refactoring effect delta table,
‘–’ denotes the not-applicable refactoring (i.e., when moving a
method to its owner class is meaningless); the value of the delta
of maintainability for this not-applicable refactoring is zero
because it does not change. When the values of the delta maintain-
ability for two refactorings are smallest and are equal, then the
refactoring is randomly assigned among them. The results of the
transformed refactorings are represented in Fig. 4.

Following this, the effect on maintainability of each group of
elementary refactorings is assessed by adding the values of the
cells (represented as the delta of maintainability) of the corre-
sponding elementary refactorings in the refactoring effect delta
table. For example, in Fig. 4, the accumulated values of the delta
of maintainability for each group are Group3 = �6, Group4 = �4,
Group5 = �4, Group1 = �3, and Group2 = �3.

The accumulated values of the groups of elementary refactor-
ings are prioritized in descending order, and the group of elemen-
tary refactorings with the largest value is selected. We then check
the stopping condition whether or not there is any maintainability
improvement. If maintainability has improved, the selected refact-
orings are applied, the design model is updated and the refactoring
effect delta table is recalculated. For example, among the five refac-
toring groups shown in Fig. 4, the refactorings in Group3 = �6
reduce the number of inter-dependencies by the largest value thus
are selected and applied. The identification procedure for multiple
refactorings is repeated until no more refactoring candidates that
can improve maintainability can be found. The selection procedure
for multiple refactorings is then stopped, and the resulting
sequence of groups of refactorings are generated.
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Dn A B C D
m1 1 - 1 1
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(c) Delta table Dn: maintain-
ability for each Move Method
refactoring for the design model n
of Fig. 2(a).

Dn+1 A B C D
m1 -1 - 0 0
m2 - 1 1 -1
m3 - 3 3 2
m4 -1 0 - 0
m5 1 2 2 -
m6 - 1 1 1
m7 - 1 1 1
m8 - 1 1 1
m9 1 2 2 -
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(d) Delta table Dn 1: main-
tainability for each Move Method
refactoring for the design model
(n 1) of Fig. 2(b).

Fig. 2. Example of the design model and the refactoring effect delta table. (D maintainability represents the difference of the number of the inter-dependencies after applying
each Move Method refactoring candidate, therefore, the more the number of the inter-dependencies reduces, the more maintainability improves.)
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We need to ensure that proper constraint is applied to pre-
vent our algorithm from merging all classes (e.g., God Class).
Such action would have negative impact on maintainability.
Specialization ratio S, whose value is computed by dividing the
number of root classes divided by that of all classes, indicates
the portion of clustered group of classes. If the S of the refactored
model exceeds the threshold, the identification process is
stopped. We used 0.45 (e.g., 45%) as a threshold value based
on research reported in [32,33], but other values can be substi-
tuted if desired.

4. Evaluation

We evaluate the effectiveness and efficiency of our approach for
identifying the multiple refactorings that can be applied simulta-
neously in terms of maintainability improvement and cost reduc-
tion. The research questions for our experiment are as follows.
� RQ1. (Effectiveness): Does the simultaneous application of
multiple refactorings help improve maintainability?
� RQ2. (Efficiency): By how much does this approach reduce the

computation cost of to achieve the same degree of
maintainability?

Three projects are chosen as experimental subjects: jEdit [14],
Columba [15], and JGit [16]. A number of reasons led us to select
these as subjects:

� They contain a relatively large number of classes.
� They are written in Java, and our proposed method applies to

object-oriented software.
� They are widely used as experimental subjects in literature in

the areas.

Table 1 summarizes characteristics of each subject.
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IS 4.

m2

(i) Remove m9 and the edges asso-
ciate with it.
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(j) Pick node m2 and add it to set
IS 5.

Fig. 3. Illustrative example of decomposing entities of the design model (in Fig. 2(a)) into independent sets (IS) for the design in Fig. 2(a). The results are IS1 = {m3}, IS2 =
{m1, m4, m6, m7, m8}, IS3 = {m5}, IS4 = {m9}, and IS5 = {m2}.
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Our approach considers all Move Method refactorings available
in the system; thus, all the Move Method refactorings are regarded
as refactoring candidates. A group of refactoring candidates
obtained from an MIS is the unit of the refactoring application
because those refactoring candidates in the group (set) are
independent to each other and can be applied simultaneously.



Fig. 4. Example of transforming methods involved in each MIS into a group of elementary refactorings and assessing the effect of the groups of refactorings.

Table 1
Characteristics for each subject.

Name jEdit Columba JGit
(Version) (jEdit-4.3) (Columba-1.4) (JGit-1.1.0)

Type Text editor Email client Distributed source
version control system

Class ] 952 1506 689
Method ] 6487 8745 5334
Attribute ] 3523 3967 2989
MIS ] 1272 1199 1190
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Therefore, MISs can be regarded as the refactoring opportunities to
be applied, and we add the number of the MISs obtained in each of
the subject systems in the last row of Table 1.
4.1. Experimental design

We compare the approach of identifying multiple refactorings
(our approach) with that of identifying a single refactoring in each
iteration of the refactoring identification process. The approach for
identifying a single refactoring follows the basic structure of the
refactoring identification process illustrated in Fig. 1. In the single
refactoring approach, refactoring candidates that are all Move
Method refactorings available in the system are assessed using
the refactoring effect delta table, and the refactoring candidate that
best improves maintainability is selected and applied. Then, the
entire refactoring identification process is iterated. Both of the
approaches select refactoring(s) that best improve maintainability
repeatedly in a stepwise manner by iterating the refactoring iden-
tification process. The final outputs are a sequence of groups of
refactorings in our approach, while a sequence of refactorings in
the single refactoring approach.
To answer the question about the effectiveness of our approach
of identifying multiple refactorings (RQ1), we show that the refac-
tored design that applies refactorings identified by our approach
contributes to improving the maintainability of the system. The
groups of refactorings are identified until the final solution is
reached, where no more refactorings that improve maintainability
are found, by repeating the refactoring identification process, and
the sets of multiple refactorings are applied in the identified
sequence to the original design.

For presenting maintainability improvement of the refactored
design of the code, the maintainability is measured using a main-
tainability evaluation function [10], which was used to assess the
contribution to improving maintainability of extracted refactoring
candidates in our previous paper. It is designed as cohesion

coupling to produce

larger values as the system becomes more maintainable (with
higher cohesion and lower coupling). The maintainability evalua-
tion function of this design determines the merging of unrelated
units of codes to be bad because this reduces coupling but lowers
cohesion. Several metrics related to cohesion and coupling are nor-
malized, weighted, and added up in this function. In addition to the
maintainability evaluation function values, we also present two
metrics, Method Similarity Cohesion (MSC) [34] and Message Pass-
ing Coupling (MPC) [35]. In MSC, the similarity among all pairs of
methods is integrated and normalized to measure the cohesiveness
of the class. MSC is different from other cohesion metrics in that it
considers the degree of similarity between a pair of methods in a
class. MPC is a commonly used metric for representing coupling
and is appropriate to capture small code changes, such as moving
a method to a class. MPC for a class c indicates the number of static
method calls for all invoked imported methods.

On the other hand, to investigate the efficiency of multiple
refactorings (RQ2), we compare the cost of the two approaches
to reach the final solution and to obtain the same degree of main-
tainability improvement. We can show that our method is more
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efficient than the single refactoring selection approach in the fol-
lowing ways: (1) our approach can achieve a greater degree of
maintainability improvement for the same cost and (2) our
approach can attain the same degree of maintainability improve-
ment at a lower cost. We choose the second method, which is eas-
ier to understand on account of simpler numbers.

The total computation cost (i.e., that which is required to gener-
ate the final solution, where no more refactorings that improve
maintainability are found) is obtained by accumulating the compu-
tation cost required for each iteration of the refactoring identifica-
tion process. The computation cost includes calculating MISs,
calculating the refactoring effect delta table for assessing the refac-
toring candidates in each MIS, and applying the selected multiple
refactorings by updating the design model. The computation cost
is measured in terms of the number of iterations and the elapsed
time (i.e., run-time). The elapsed time can be affected by environ-
mental (external) factor; however, it is proportional to the total
number of iterations and can therefore be an alternative indicator
representing the computation cost. The elapsed time (s) is mea-
sured under the following conditions: processor 1.8 GHz Intel Core
i5, Memory 8G 1600 MHz DDR3, Graphic Intel HD Graphics 4000
512 MB, and Software OS X 10.8.2.
4.2. Results

4.2.1. RQ1: Effectiveness
Table 2 summarizes the results of maintainability (maintain-

ability evaluation function values, MSC (cohesion metric) and
MPC (coupling metric)), where each approach has arrived at the
final solution for jEdit, Columba, and JGit, respectively. The graphs
in Fig. 5 shows the visual results. In all three projects, the main-
tainability evaluation function values of our approach are greater
than those of the original design. In addition, the MSC value
increases while the MPC value decreases. Therefore, our approach
contributes to the improvement of maintainability.

As shown in Table 2, the values of the maintainability evalua-
tion function obtained from our approach are higher than those
of the single refactoring approach (e.g., 0.0317 vs 0.0303 for jEdit).
On the case studies performed on three real-world examples, our
approach outperformed the single refactoring approches. However,
application on other examples may yield different performance.
Goal of this research is not to prove that our approach will always
outperform alternative approaches. Rather, we convincingly dem-
onstrated that our approach will deliver effective improvement
on maintainability.

The final sequence of applied refactorings are different in the
two approaches, thus the final achievement for maintainability
Table 2
Results of the effectiveness of multiple refactorings.

Subject Competitors Mainta

Mainta

jEdit Original design 0.0232
Single refactoring 0.0303
Multiple refactoring (our approach) 0.0317

Columba Original design 0.0231
Single refactoring 0.0369
Multiple refactoring (our approach) 0.0379

JGit Original design 0.0213
Single refactoring 0.0227
Multiple refactoring (Our approach) 0.0264

⁄ Original design: initial design of software (before applying refactorings).
⁄ Single refactoring: approach of selecting a single refactoring when reaching to the fin
⁄ Our approach: approach of selecting multiple refactorings when reaching to the final
⁄ � Final solution: no more refactorings that improve maintainability are found by repe
improvement become different. This is because a method of selec-
tion for each iteration results in determining which refactoring(s)
be applied first, and subsequently, next available refactoring candi-
dates are changed. More specifically, according to the selection
method, the preceding applied refactoring(s) is/are determined.
This situation subsequently changes the most beneficial (or avail-
able) refactoring candidates at the time of the next selection. When
terminating the process, a selected sequence of refactorings is gen-
erated and it becomes the suggested sequence of refactorings to be
applied. As a result, according to the selection method, the applied
refactorings become different.
4.2.2. RQ2: Efficiency
Table 3 summarizes the results of the required costs (in terms of

the number of iterations) to reach the final solution (see Table 2)
and the number of selected refactorings per iteration of the two
competing approaches for jEdit, Columba, and JGit, respectively.
The total number of iterations required to reach to the final solu-
tion using our approach is much smaller than that required by
the method of selecting a single refactoring: jEdit (26 < 1586),
Columba (39 < 2290), and JGit (74 < 620).

In addition, Fig. 6 shows the results of the required costs (in
terms of the number of iterations) to accomplish the same degree
of maintainability improvement. We compare the number of iter-
ations required to accomplish n (n = 25, 50, 75, 100) percent(%)
of maintainability improvement. The maintainability improvement
indicates the difference between maintainability evaluation func-
tion values of the final solution and the original design. To fairly
compare the efficiency of two competing approaches, we set the
smaller degree of maintainability improvement attained between
the two competing approaches to serve as the baseline for compar-
ison of efficiency in achieving the same degree of maintainability
improvement. Thus, the improvement achieved by the single
approach becomes the baseline for comparison because our
approach improves maintainability by a greater degree than the
single approach for all projects (as shown in Table 2). When calcu-
lating the number of iterations required for a specific degree of
maintainability improvement, the number is rounded off to the
nearest whole number. As the final outcome, our approach reaches
the same degree of maintainability with a much smaller number of
iterations than the competing approach of selecting a single
refactoring.

For further analysis, we take a close look in Fig. 7 at the graphs
of required costs (in terms of elapsed time) to reach the final solu-
tion for jEdit, Columba, and JGit, respectively. The x-axis shows the
elapsed time, and the y-axis shows the maintainability evaluation
function values. In both jEdit and Columba (Fig. 7(a) and (b),
inability
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Fig. 5. The graphs for visualizing the effect of multiple refactorings.

Table 3
Results of the efficiency of multiple refactorings—the required number of iterations to reach the final solution.

Subject Competitors Computation cost1 Reference

] of iterations ] of applied refactorings (per iteration)

Final solution� Avg. Max. Min. Std dev.

jEdit Single refactoring 1586 1 1 1 0
Multiple refactoring (Our approach) 26 60.5 454 3 109.3

Columba Single refactoring 2290 1 1 1 0
Multiple refactoring (Our approach) 39 76.8 629 2 81.4

JGit Single refactoring 620 1 1 1 0
Multiple refactoring (Our approach) 74 22.5 569 2 73.2

⁄ Single refactoring: approach of selecting a single refactoring when reaching to the final solution.
⁄ Our approach: approach of selecting multiple refactorings when reaching to the final solution.

� Final solution: no more refactorings that improve maintainability are found by repeating refactoring identification process. (see Table 2).
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respectively), maintainability evaluation function values of our
approach increase rapidly, while those of the single refactoring
approach increase comparatively slowly. Even though there is an
overhead to compute MISs in the first step for the selection of mul-
tiple refactorings (denoted as ‘‘Preprocessing Time’’ in the graphs
in Fig. 7), our approach can attain the same degree of maintainabil-
ity improvement at a much lower cost (i.e., time or the number of
iterations). Thus, the benefit of net reduced time more than out-
weighs this necessary overhead.

As shown in Table 3 and Fig. 7(c), performance difference on
JGit is substantially greater than that of jEdit or Columba. Main-
tainability improvement on single refactoring approach became
almost non-existent due to local optimum problem. By analyzing
the applied refactorings identified from the single refactoring
approach, we observed that it often selected ones that methods
in Command classes be moved to Revwalk or Treewalk classes.
This is because the Command classes are reified classes in which
methods do not often have references with attributes; and meth-
ods in the Command classes had a large number of dependencies
with the Revwalk and Treewalk classes. Accordingly, the next
(or the second) most promising refactorings are rarely selected,
even though the differences between the degree of maintainability
improvement of those refactorings and that of the best refactorings
are subtle and negligible. Applying some of the next most promis-
ing refactorings (e.g., moving methods in Command classes, such
as MergeCommand, RebaseCommand, and PullCommand, to one
another) would contribute more to increasing the maintainability
at the end. Such pattern is repeated until no improvements are
found, thus falling into the trap of local optimum. Our technique,
on the other hand, allows methods that do not have any dependen-
cies be moved simultaneously. Therefore, in some cases, selecting
multiple refactorings makes the effects of performing the
simulated annealing (a search technique for finding an actual best
solution by exploring possible solutions accepting better solutions
as well as worse solutions), which prevents getting stuck in the
local optimum.

4.2.3. Discussion and conclusion
Our approach of selecting multiple refactorings could be more

complex and thus harder to use than the approach of selecting a
single one at each step. Yet, in our approach, the smallest unit of
refactoring application is the group of Move Method refactorings
that can be applied at the same time. The entire refactoring process
is repeated by identifying and assessing refactoring candidates. On
the other hand, big refactorings (consisting of small refactorings
having complex dependencies) are very hard to safely execute
because they could affect a larger portion of the source code and
thus degrade understandability. Therefore, compared to big
refactorings, the required application cost of relocating codes or
retesting affected portions of codes would be smaller using the
multiple refactorings identified in our approach.

From the results, we can conclude that our approach helps
enhance the effectiveness and efficiency of the refactoring identifi-
cation process. Compared to the selection method involving single
refactoring, our approach selects refactorings that improve the
maintainability of the software design at lower computation costs
(in terms of smaller iterations or shorter elapsed time). Even
though our method requires an overhead to compute MISs at the
beginning of the refactoring identification process, the benefit of
net reduced time more than outweighs this necessary overhead.
Furthermore, the single refactoring approach may face the local
optimum problem. In this experiment, our approach tends to per-
form better in avoiding local optima by selecting refactorings
evenly throughout the software.
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(c) JGit

Fig. 6. Results of the efficiency of multiple refactorings—the number of iterations
required to accomplish the same degree of maintainability improvement. Note that
we set the smaller degree of maintainability improvement to serve as the baseline
for comparison.

(a) jEdit

(b) Columba

(c) JGit

Fig. 7. Results of the effect of multiple refactorings on time.
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4.3. Threats to validity

In this section, we address the possible threats to validity in the
four perspectives: construct validity, internal validity, external
validity, and reliability.

4.3.1. Construct validity
In [10], we defined the maintainability evaluation function as a

fitness function by combining cohesion (numerator) and coupling
(denominator) into one numerical value. For this reason, values
are generally very small and the significance on the performance
difference may appear negligible. As supplementary values, we
also use cohesion and coupling metrics (e.g., MSC and MPC) as
other studies [8,36] did.

In this paper, we do not make direct comparison on the quality
of the identification of refactoring candidates [36,37,8], as the main
contribution of our paper is to select multiple refactorings that can
be applied simultaneously for every iteration of the refactoring
identification process. The initial refactoring opportunities can be
taken from any refactoring recommendation tool if desired as long
as dependencies among candidates are established; then, the
groups of multiple refactorings can be identified.
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Basically, the single refactoring approach follows the same
refactoring identification approach with ours but selects one refac-
toring candidate that best improves maintainability among all
Move Method refactorings available in the system. With regard
to the efficiency of the computation for refactoring identification,
the single refactoring can be the main competitor because the
aim of evaluation is to show that the application of multiple refact-
orings at a time significantly reduces the number of iterations
required to perform (compared to the application of a single
refactoring).

We do not make direct comparison on the memory consump-
tion against the single refactoring approach. Both techniques are
essentially stepwise selection approaches where refactoring candi-
dates are repeatedly identified and evaluated at each iteration.
Memory requirements of two approaches in each iteration are
almost same. Furthermore, comparison on accumulated amount
of memory consumption is meaningless because it is freed at the
end of each iteration. On the other hand, if search-based refactor-
ing techniques are applied, memory consumption would be
substantially large due to the application of backtracking algorithm
where candidates are incrementally built and kept until they are
determined not to be valid (or final) solutions.

4.3.2. Internal validity
In this paper, we focus on relations established by method call-

ing procedures when capturing dependencies among entities in the
design model. The dependencies related to the methods that do not
affect the behavior of the system (e.g., getter/setter methods and
delegate methods) are excluded when constructing the design
model. For dependencies that may affect maintainability, other
types of dependencies caused by structural relations between clas-
ses (such as association, aggregation, composition, and inheri-
tance) can be considered.

We assume that the application of Move Method refactorings
does not delete or merge entities constituting the refactorings
and, therefore, the nodes and edges of the initial design model GR

remain the same after the application of the selected refactorings.
Therefore, in our paper, MISs do not need to be recalculated for
every iteration of the refactoring identification process. We plan
to consider other types of refactoring in our future work. For taking
into these types of refactoring account, we need to develop a
method to efficiently recalculate MISs to accommodate situations
where the application of refactorings deletes or merges entities.

4.3.3. External validity
Controlled study performed on large and complex open source

software convincingly demonstrated that proposed approach is
highly effective compared to single refactoring approach. Assum-
ing that chosen applications exhibit characteristics of object-
oriented software that are subject to design refactoring, similar
results are expected although the degree of maintainability
improvement would vary from one application to another.

4.3.4. Reliability
The proposed method has been implemented using Python and

the data used for the experiment is available online [38]. We use an
efficient method for calculating the refactoring effect delta table
using matrix computation. By only changing the link and member-
ship matrices (the modeling configuration of the software design)
and manipulating those matrices, the ‘‘delta of maintainability’’
for the application of a Move Method refactoring candidate on
the design configuration can be easily obtained at once. The matrix
computation is fast because there are various scientific and numer-
ical techniques to accelerate the speed (e.g., we use SciPy [39]
libraries implemented for Python). Assessing the effects of
refactoring candidates is the most computation-intensive part, so
this method helps to reduce the computation time.

5. Conclusion

In this paper, we provided an automated method for selecting
multiple refactorings that can be applied simultaneously to
improve the efficiency of the refactoring identification process.
To determine the groups of refactorings that can be applied inde-
pendently, the entities are grouped into MISs. By using a refactor-
ing effect delta table, each group of refactorings is assessed and
sorted in order of expected degree of improvement on maintain-
ability. Finally, we select the multiple refactorings that best
improves maintainability. Experimental results showed that the
method of selecting multiple refactorings helps enhance the effec-
tiveness and efficiency of the refactoring identification process by
improving maintainability while reducing the computation cost.
Our approach also showed better performance in avoiding local
optima by selecting refactorings evenly throughout the software.

While the most promising refactoring candidates are identified
automatically, the software developer makes the final decision
with respect to applying the suggested candidates based on expe-
rience and design principles.

For future research, we plan to consider other types of refactor-
ing. Our method of the refactoring effect delta table can support
the extension of the refactoring process to other types of refactor-
ing. This is feasible because our approach provides a method of
assessing an elementary refactoring, and big refactorings (e.g., Col-
lapse Hierarchy Class refactoring, Pull Up Method refactoring)
comprise of those elementary refactorings (e.g., Move Method
refactoring).
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