
The Journal of Systems and Software 83 (2010) 222–234
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Measuring behavioral dependency for improving change-proneness prediction
in UML-based design models

Ah-Rim Han a,*, Sang-Uk Jeon a, Doo-Hwan Bae a, Jang-Eui Hong b

a Division of CS, College of Information Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
b Computer Engineering Division, School of Electrical and Computer Engineering, Chungbuk National University, Chungju 361-763, Republic of Korea

a r t i c l e i n f o
Article history:
Received 2 March 2009
Received in revised form 27 July 2009
Accepted 22 September 2009
Available online 25 September 2009

Keywords:
Change-proneness
UML
Behavioral dependency measure
Object-oriented metrics
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.09.038

* Corresponding author. Tel.: +82 42 350 5579; fax
E-mail addresses: arhan@se.kaist.ac.kr (A.-R. Han

Jeon), bae@se.kaist.ac.kr (D.-H. Bae), jehong@chungbu
a b s t r a c t

Several studies have explored the relationship between the metrics of the object-oriented software and
the change-proneness of the classes. This knowledge can be used to help decision-making among design
alternatives or assess software quality such as maintainability. Despite the increasing use of complex
inheritance relationships and polymorphism in object-oriented software, there has been less emphasis
on developing metrics that capture the aspect of dynamic behavior. Considering dynamic behavior met-
rics in conjunction with existing metrics may go a long way toward obtaining more accurate predictions
of change-proneness. To address this need, we provide the behavioral dependency measure using struc-
tural and behavioral information taken from UML 2.0 design models. Model-based change-proneness
prediction helps to make high-quality software by exploiting design models from the earlier phase of
the software development process. The behavioral dependency measure has been evaluated on a
multi-version medium size open-source project called JFlex. The results obtained show that the proposed
measure is a useful indicator and can be complementary to existing object-oriented metrics for improv-
ing the accuracy of change-proneness prediction when the system contains high degree of inheritance
relationships and polymorphism.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Software changes either to enhance functionality or to fix bugs
(Parnas, 2001). Therefore, changes are unavoidable and the antici-
pation of such changes is very important in software development
and maintenance. Some classes of software may be more prone to
changes than others. The likelihood that a change will occur is re-
ferred to as change-proneness. Predicting change-proneness can be
useful for a number of reasons. It enables developers to focus on
preventive actions such as peer-reviews, testing, and inspections
allowing them to use their resources more efficiently and deliver
higher-quality products in a timely manner (Günes� Koru and Liu,
2007). The prediction of change-proneness can also help to choose
among possible design alternatives or aid in the assessment of
changeability decay (Arisholm and Sjøberg, 2000). Without such
an assessment, a greater effort would be required to implement
changes (i.e., a lack of maintainability). Other studies have pre-
dicted change-proneness as a means of estimating maintenance ef-
fort (Li and Henry, 1993).

In current practice, change-proneness prediction is generally
performed based on codes during the later stages of software devel-
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: +82 42 350 8488.
), sujeon@se.kaist.ac.kr (S.-U.
k.ac.kr (J.-E. Hong).
opment or maintenance phase, after architectural decisions have
been made that cannot easily be reversed. However, if the
change-prone classes can be predicted at the earlier stages of soft-
ware development life cycle, when the design models become
available, modifying the current design or choosing design alterna-
tives would be relatively easy and inexpensive. Furthermore, mod-
el-based change-proneness prediction gives a high return on
investment because decisions made with regard to design models
have substantial downstream consequences; predicting change-
proneness improves software quality and saves development costs.
Model-based change-proneness prediction is also useful for directly
visualizing the locations of changes on UML design models. Indeed,
this greatly improves the understandability of the software.

Several studies have attempted to predict change-prone classes
using established object-oriented software metrics (Arisholm et al.,
2004; Arisholm and Sjøberg, 2000; Chaumun et al., 2002; Bieman
et al., 2003); complexity, coupling, and cohesion metrics have re-
ceived considerable interest in this regard. However, in spite of
these efforts for developing change-proneness prediction models,
a substantial part of change-prone classes is still not explained.
Therefore, other important information is needed to build a more
accurate and consistent change-proneness prediction model.

Despite the increasing use of complex inheritance relationships
and polymorphism in many applications of object-oriented
software, there has been less emphasis on the aspect of dynamic
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behavior when developing design quality metrics. We may obtain a
better change-proneness prediction model by accounting for and
measuring the behavioral aspects of the software. Thus, we have
developed the Behavioral Dependency Measure (BDM). This mea-
sure can be derived not only from the structural information, but
also from the behavioral information of UML 2.0 design models.
Design models in UML 2.0 (OMG, 2007) possess both pieces of
information of the software. A class diagram provides the struc-
tural information of classes and the relationships between those
classes. A Sequence Diagram (SD) and an Interaction Overview Dia-
gram (IOD) are used for capturing the behavioral aspects of the
software. An SD depicts the software in terms of a specific se-
quence of messages between objects. In SDs, alt, opt, and loop com-
bined fragments enable modeling of complex control structures in
a manner similar to the modeling in source codes. An IOD, newly
introduced in UML 2.0, represents an overview of the control flow
of the complete software.

We empirically assess the statistical and practical significance
of the BDM for predicting change-prone classes using JFlex
(2009). The results of the experiment show that the BDM helps
to improve the accuracy of change-prone class prediction over that
of metrics such as Chidamber and Kemerer (C&K) metrics (Chidam-
ber et al., 1994), Lorenz and Kidd metrics (Lorenz and Kidd, 1994),
and Metrics for Object-Oriented Development (MOOD) metrics
(Abreu, 1995; Abreu et al., 1995) when the system contains high
degree of inheritance relationships and polymorphism. On the
other hand, when inheritance relationships and polymorphism
are used less in the system, the BDM made no difference in the pre-
diction of change-prone classes. This indicates that the BDM is
more sensitive than other metrics to properties related to dynamic
behaviors. Indeed, a consideration of the above mentioned proper-
ties may contribute to a more accurate prediction of the change-
proneness of a system that contains high degree of inheritance
relationships and polymorphism.

The rest of the paper is organized as follows. Section 2 contains
a discussion of related studies. In Section 3, we discuss both the
behavioral dependencies that might cause changes and the novel
features of the proposed BDM. In Section 4, we systematically de-
scribe how to calculate the BDM. Section 5 contains a description
of the construction of a change-proneness prediction model. In
Section 6, we present a case study to evaluate the proposed BDM
and discuss the results obtained. Finally, we conclude this study
and discuss futures research in Section 7.
2. Related work

Change-proneness prediction is associated with change impact
analysis. The former predicts which classes are likely to change in
the future (i.e., change over successive versions), whereas the lat-
ter predicts which classes may be impacted by a given change.
However, model-based change-proneness prediction or change im-
pact analysis is rarely discussed, despite the fact that rich algo-
rithms and tools for source code level studies have been
developed. Hassan and Holt (2004) proposed several heuristics
to predict change propagation. Bohner and Arnold (1993) gave
an overview of several formal models of change propagation,
introducing a number of tools and techniques, such as slicing
and transitive closure, based on code dependencies and algo-
rithms. Li et al. (1996) proposed a set of algorithms that deter-
mine which classes are affected when a given change is
proposed. Their methodology represents a system as a set of data
dependency graphs. Chen and Rajich (2001) developed a tool to
identify the location where changes might be propagated. This
tool uses the data/control flow dependencies captured in source
codes. The advantage to this tool is that accuracy is increased
because it also considers conceptual dependencies. However,
these dependencies must be manually specified by the user.

Other studies have investigated the relationship between exist-
ing metrics (e.g., coupling) and change-proneness or the impact of
changes. Briand et al. (1999) empirically investigated whether cou-
pling metrics are related to ripple effects using a commercial ob-
ject-oriented system. The aim for using coupling metrics is to
rank classes according to the probability of containing ripple
effects. However, traditional coupling metrics fail to capture
complex dependency caused by inheritance relationships and
polymorphism. This results in a less accurate prediction of
change-proneness prediction of the software that contains high
degree of inheritance relationships and polymorphism. Wilkie
and Kitchenham (1999) considered whether classes with high
CBO (Coupling Between Object) are more likely to be affected by
ripple changes. They found that CBO is generally an indicator of
change-proneness. Since CBO cannot account for all possible
changes, they also suggested that a more comprehensive coupling
metric is required for improving predictions of the potential for
change ripple effects in each class. Arisholm et al. (2004) investi-
gated the use of dynamic coupling metrics as indicators of
change-proneness. Their approach is based on correlating the
number of changes, a continuous variable which represents
change-proneness, to each class with dynamic coupling metrics
and other class-level size and static coupling metrics. However,
dynamic coupling requires extensive test suites to exercise the sys-
tem. Such test suites may not be readily available. There have been
several attempts aiming at assessing external quality factors, such
as maintainability, flexibility, and changeability of object-oriented
designs. In Chaumun et al. (2002), a change impact model was pro-
posed for changeability assessment with the primary goal of inves-
tigating the relationship between existing metrics and the impact
of change. In Li and Henry (1993), relationship between existing
metrics and maintenance effort (i.e., the number of lines changed
per class) has been studied.

Several researchers have proposed probabilistic approaches for
evaluating evolution and assessing the probability that each class
will change over successive versions (Sharafat and Tahvildari,
2007). Tsantalis et al. (2005) estimated the change-proneness of
an object-oriented design by evaluating the probability that each
class of the system will be affected when a new functionality is
added or when an existing functionality is modified. The output
range of the probabilistic measure is from 0 (no changes) to 1
(changes). This is a heavyweight approach with regard to the col-
lection of data in the sense that previous versions of a system have
to be analyzed to acquire internal probability values; this could
create scalability problems for large systems. In addition, this ap-
proach cannot be applied during the early stages of the develop-
ment process such as at the design level.
3. The behavioral dependency measure for change-proneness
prediction

3.1. Behavioral dependency

A change in a class can affect other classes enforcing them to be
modified. In order to predict the class affected when a class
changes occurs, we need to examine the dependencies of pairs of
entities (i.e., classes or objects) in the system. In this paper, we fo-
cus on behavioral dependency.

Essentially, we assume that the object sending a message has a
behavioral dependency on the object receiving the message. This is
derived from the insight that modifying the class of the object
receiving a message may affect the class of the object sending
the message. It is important to note that when an object sends a
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message to another object, the class implementing the correspond-
ing method of the message may be different from that of the object
receiving the message. This is due to the use of inheritance rela-
tionships and polymorphism, which may cause dynamic binding
of methods. In this case, the class of the object sending a message
must be bound to (i.e., have a behavioral dependency on) the class
implementing the actual method of that message. Therefore, we
need to consider inheritance relationships and polymorphism
according to the behavior of objects in order to correctly identify
dependencies between classes and ultimately predict change-
proneness accurately. This issue will be explained in detail in
Section 3.2. We also assume that a high intensity of behavioral
dependency represents high possibility of changes to be occurred.
The rationale behind this assumption is that the more external ser-
vices upon which the class of an object is dependent, the more
likely it is that the class will be changed.

To quantify the behavioral dependency, we define two kinds of
behavioral dependencies: direct and indirect. Each is defined as fol-
lows. Let O denote a set of objects existing in a system.

Definition 1 (Direct behavioral dependency). For op1; op2 2 O; op1
has a direct behavioral dependency on op2 if op1 needs some
services of op2 by sending a synchronous message to op2 and
receiving a reply from op2. We denote direct behavioral depen-
dency as a relation !.

Definition 2 (External service request relation). For op1; op2; op3 2
O; op1 ! op2 and then op2 ! op3 because op1 needs external
service which is provided from op3 via op2. We denote this as an
external service request relation y. Therefore, in this case,
ðop1 ! op2Þy ðop2 ! op3Þ.

Definition 3 (Indirect behavioral dependency). We denote indirect
behavioral dependency as a relation ,. For example, for op1; op2;

op3; . . . ; opn 2 O, if we have the relation ðop1 ! op2Þyðop2 !
op3Þy . . .yðopn�1 ! opnÞ, then we can derive the indirect
behavioral dependency as op1,opn except n ¼ 2, which means a
direct behavioral dependency op1 ! op2.

A synchronous message entails a dependency between two ob-
jects since the sender object depends on the receiver object. On the
other hand, an asynchronous message does not entail such depen-
dency since the sender object does not wait for a reply but contin-
ues to proceed. This means the reply will not affect the sender
object’s behavior. Therefore, in our approach, we only consider
synchronous messages with replies.

Fig. 1 shows two examples of SDs. In SD sd A, object o1 has a di-
rect behavioral dependency on object o2 because it sends a syn-
chronous message a to object o2 and receives a reply from it. On
the other hand, object o1 has an indirect behavioral dependency
on object o3; before object o1 receives a reply for messagea from
object o2, message b is sent from object o2 to object o3. By the same
sd A

o1:c1 o2:c2 o3:c3 o4:c4 o5:c5

b

e

a
c

d

f

sd B

alt

o1:c1 o2:c2 o3:c3

a

b
[else]

[cond]

g

Fig. 1. Examples of Sequence Diagrams (SDs).
reasoning, object o1 and object o4, as well as object o2 and object o4,
have indirect dependencies. Asynchronous message e from object
o1 to object o2 does not entail a behavioral dependency since object
o1 (the sender) does not wait for a reply from object o2. All mes-
sages in SD sd B cause direct behavioral dependencies.

It is important to note that an indirect behavioral dependency is
not a transitive relation. For example, in Fig. 1, object o1 and object
o5 do not have a behavioral dependency, even though object o1 and
object o2 have a behavioral dependency because of message a and
object o2 and object o5 have a behavioral dependency because of
message f. This is because message f is sent from object o2 to object
o5 after object o1 receives the reply for message a from object o2.
For this reason, we need to save the information of the message
that triggers the current message to precisely identify the indirect
behavioral dependency between the two objects. In this way, when
object oi has an indirect dependency on object oj, we can derive a
reachable path (a sequence of exchanged messages between two
objects) by traversing stored messages from object oj to object oi

in a backward direction.

3.2. Features of the behavioral dependency measure

The proposed BDM has a number of features that are different
from existing metrics.

First, the most important feature of the BDM that makes it un-
ique is that it considers inheritance relationships and polymor-
phism. In general, polymorphism indicates method overriding
and method overloading. We do not take method overloading into
account because it refers to methods that have same name with
different numbers or types of parameters in one class; as a result,
method overloading does not occur dependency among classes.
Therefore, in this paper, polymorphism means method overriding
on the classes having inheritance relationships. As the system con-
tains more inheritance relationships and polymorphism, depen-
dency among classes becomes more complex because of dynamic
binding of methods. Hence, inheritance relationships and polymor-
phism as they relate to the behavior of objects need to be consid-
ered in order to correctly identify dependency among classes.
Indeed, this is critical for the accurate prediction of change-prone-
ness. If we were not to consider inheritance relationships and poly-
morphism, a class may be mistakenly predicted to be prone to
change. The example in Fig. 2 shows the importance of considering
inheritance relationships and polymorphism in relation to the
behavior of objects when measuring dependency between classes.
In the class diagram in Fig. 2a, the Canvas class has an association
with the Shape class, which indicates that the Canvas class calls
the method draw in the Shape class. In other words, the Canvas class
is dependent on the Shape class. This static dependency is the infor-
mation that we can derive from the class diagram. Most existing
coupling metrics are measured based on static dependencies. How-
ever, if the message draw is sent to the object that is an instance of
the subclass of the Shape class and that subclass overrides the
method draw, the dependency is bound between the Canvas class
and the subclass, even though the association is specified between
the Canvas class and the Shape class. Furthermore, if the message
draw is sent to the object that is an instance of the subclass of
the Shape class but does not have the method draw, the dependency
is bound between the Canvas class and the subclass’s one of the
parent classes that implement the method draw. The SDs in
Fig. 2b illustrate the behavior of the objects that are instances of
subclasses (i.e., Triangle class, Circle class, Rectangle class, and Square

class) of the Shape class in Fig. 2a. By considering the three fore-
most SDs, we can determine that the Canvas class is behaviorally
dependent on the Triangle class, Circle class, and Rectangle class,
all of which override the method draw. By considering the last
SD, which tell us that the object of the Square class receives the
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Fig. 2. An example of using inheritance relationships and polymorphism: (a) A class
diagram representing classes and their relationships. (b) SDs representing the
behaviors of objects that are instantiated from the classes in 2(a).
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Fig. 3. (a) An example of the Interaction Overview Diagram (IOD). (b) An example
of the class diagram that has classes from which the objects, in the SDs in Fig. 1 are
instantiated.
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message draw, we can also determine that the Canvas class is behav-
iorally dependent on the Rectangle class, since the method of the
message draw is actually implemented in the Rectangle class. As a
consequence, no matter where an actual method is implemented,
the proposed BDM enables a class of the object sending a message
to be bound to the class that implements the actual method of that
message; this is the feature that makes the BDM more sensitive to
systems with high levels of inheritance relationships and
polymorphism.

Second, we consider the extent and direction when measuring
the behavioral dependency. No matter how many times a class
calls the method of another class, the established coupling metric
(e.g., CBO) treats this as one in either direction. This is because
the established coupling metric is based on method call dependen-
cies that only capture the static characteristics of couplings. Let us
consider two cases; class cj implements one method called 100
times by class ci, while class ck implements two methods that
called by class ci once time for each method. The established static
couplings for the former case and the latter case are one and two,
respectively. However, class ci might be more behaviorally depen-
dent on class cj than it is on class ck. Therefore, it is important to
keep the information relating to the extent and direction of a
class’s dependence.

Third, we consider the execution rate of the messages based on
the control structure and the operational profile. We use two kinds
of diagrams, an SD and an IOD, to depict a system’s behavior. An SD
in UML 2.0 provides combined fragments that allow us to express
control structures such as branch and loop. An alt combined frag-
ment that corresponds to a branch control structure describes
the behavior of two or more mutually-exclusive alternatives. A
message in an alt combined fragment can be executed depending
on the condition. This may affect the behavioral dependency of ob-
jects that are related by this message. Without running a program
(i.e., dynamic information), it is difficult to determine whether the
message will be executed or not. Therefore, the probabilistic exe-
cution rate of a message is considered when measuring a behav-
ioral dependency. For example, in the SD sd B of Fig. 1, either
message a or message b is executed whether the condition is satis-
fied or not (i.e., true or false). Therefore, the probabilistic execution
rate of each message can be 0.5. An IOD in UML 2.0 illustrates an
overview of a flow of control in which each activity node can be
an SD. Some scenarios (i.e., SDs) might be executed more fre-
quently than others, as specified in the operational profile (Gittens,
2005). The operational profile provides the expected execution rate
of an SD. Therefore, the operational profile also needs to be consid-
ered for the better measurement of the behavioral dependency. We
suggest specifying the Expected Execution Rate (i.e., the opera-
tional profile) of each SD in an IOD. For example, the IOD in
Fig. 3a shows that the Expected Execution Rates of SD A and SD

B are 80% and 20%, respectively.
4. Behavior dependency measure measurement

In this section, we explain a systematic way of calculating the
BDM in UML design models using SDs, a class diagram, and an
IOD. An overview of our approach is shown in Fig. 4. The BDM is
computed through the following procedures. First, Object Behav-
ioral Dependency Model (OBDM) is constructed for each SD based
on all direct and indirect behavioral dependencies between objects
by referring to the class diagram and the IOD. After that, we syn-
thesize all OBDMs into the Object System Behavioral Dependency
Model (OSBDM) for the entire system. Next, we derive all the
reachable paths for each pair of objects in the system from the
OSBDM. We then sum the weighted reachable paths for each pair



BDM measurement procedure

«datastore»
Class Diagram

«datastore»
Sequence Diagrams (SDs)

«datastore»
Interaction Overview Diagram (IOD)

Construct OBDM for each SD

Synthesize OBDMs into 
OSBDM

«datastore»
OBDMs

Derive all reachable paths 
for each pair of objects

Sum the number of weighted reachable 
paths for each pair of classes

«datastore»
OSBDM

Caculate the BDM for each 
class

«datastore»
RPS between objects

«datastore»
sumWRP between classes

«datastore»
BDM
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of classes (a reachable path is weighted using the distance length
between objects and the execution rate of the messages of which
the reachable path is composed). Finally, we calculate the BDM
for every class in the system. Detailed procedures are described
in the following subsections.
4.1. Constructing OBDMs

A dependency model OBDMA for SD A is a 2-tuple (O, M), where

� O is a set of nodes representing objects in the SD.
� M is a set of edges representing messages that are exchanged

between two nodes. Message m 2 M represents a synchronous
message with a reply, which entails a direct dependency from
a sender object to a receiver object. Message m has following
six attributes.
– ms 2 O is the sender of the message.
– mr 2 O is the receiver of the message. mr–ms.
– mn is the name of the message.
– mb 2 M is the instance of a backward navigable message. mb–m.

‘‘-” means none.
– mmeL is the probabilistic message execution rate in an SD.

0 6 mmeL 6 1. The default value is 1.
– mmeH is the expected message execution rate in an IOD.

0 6 mmeH 6 1. The default value is 1.

ms and mr represent the sender and receiver objects, respec-
tively. Since we do not consider messages from an object to itself,
they should not represent the same node. As was pointed out in
Section 3.2, when an object sends a message to another object,
the class of the object receiving a message may be different from
the class implementing the corresponding method. In such a case,
the class of the object sending the message may change when the
implemented method changes. Therefore, when binding a receiver
node, it is important to note whether the method is actually imple-
mented in the class of the receiver object. If not, the receiver node
of the message is bound to an object of a parent class that actually
implements the method.
mb represents the message that triggers m and is called a back-
ward navigable message. As was noted in Section 3.1, mb is essen-
tial for identifying indirect behavioral dependencies between
objects. We can identify the message that activates the current
message by tracing the backward navigable message. When deriv-
ing a reachable path from the OSBDM, identification of the mes-
sage that triggers m prevents infinite loop of traversing.

As was described in Section 3.2, mmeL and mmeH help to better
predict the change-proneness of classes by considering the proba-
bilistic or expected execution rates of the messages. Later, these
rates are synthesized according to a reachable path and used to
measure behavioral dependency. mmeL represents the probabilistic
message execution rate in an SD. We consider a branch control
structure that might affect the probability of the message execu-
tion. Note that a branch control structure is represented as an alt
combined fragment in UML 2.0. When a message is in an alt
combined fragment, it is executed only when a condition of the
corresponding interaction operand is met. Therefore, mmeL is the
same as the probability that one of the interaction operands that
contain the message is selected. If an alt combined fragment is
nested, the probability that a message will be executed in the cor-
responding combined fragment is multiplied to mmeL recursively.
When a message is not contained in any combined fragments, its
mmeL is 1. mmeH represents the expected message execution rate
in an IOD. We specify the Expected Execution Rate (i.e., the opera-
tional profile) of each SD in an IOD. A message in an SD is executed
only when the corresponding SD is activated. Therefore, mmeH is the
same as the probability that the control flow of the software
reaches the SD to which the message belongs. The mmeH values
can be obtained by multiplying all the Expected Execution Rates
on the way from the initial node to the corresponding SD node in
the IOD. If an SD is always activated, the mmeH values of all the mes-
sages in the SD are 1.

Fig. 5a shows an example of two OBDMs constructed from SD sd

A and SD sd B in Fig. 1. Each node of object oi, 1 6 i 66, corresponds
to an instance of class ci in Fig. 3b. Each edge of message m is rep-
resented as mnðmb;mmeL;mmeHÞ. Due to inheritance relationships
and polymorphism, which may bring about dynamic binding of
methods (Section 3.2), we examine the behavior of objects in SDs
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Fig. 5. (a) OBDMA and OBDMB correspond to SD sd A and SD sd B in Fig. 1. (b) The
obtained OSBDM by synthesizing the two OBDMs in (a).

Table 1
RPSðoi; ojÞ, which is a set of all the reachable paths for each pair of objects (row: oi ,
column: oj) in Fig. 5b.

o1 o2 o3 o4 o5 o6

o1 – fa; a0g fab; b0g {abc,ad} – {g}
o2 – – {b} {bc,d} {f} –
o3 – – – {c} – –
o4 – – – – – –
o5 – – – – – –
o6 – – – – – –
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and the structures of classes in a class diagram in order to correctly
identify dependency between classes. In other words, when an ob-
ject sends a message to another object, we first check whether the
method of the message is implemented in the class of the receiving
object or in one of its parent classes; we then create an edge corre-
sponding to the message between the node of the object sending
the message and the object of which the class actually imple-
mented the method of the message. For instance, when object o1

sends message a to object o2, just as in SD sd A, we create the edge
of message a between node o1 and node o2 in OBDMA since class c2

overrides method a. On the other hand, when object o1 sends mes-
sage g to object o2, just as in SD sd B, we create the edge of message
a between node o1 and node o6 in OBDMB since class c6 actually
implements method g. To distinguish the messages in OBDMB from
those in OBDMA, we rename message a to a0 and b to b0. Since either
the message a0 or b0 may be activated depending on the condition
of the alt combined fragment, both a0meL and b0meL are 0.5. The Ex-
pected Execution Rates of SD A and SD B are represented in the
IOD in Fig. 3a and are reflected in the execution rates of the mes-
sages as 0.8 and 0.2, respectively.

4.2. Synthesizing OBDMs into an OSBDM

To determine the behavioral dependencies between objects in
the whole system, we synthesize OBDMs into OSBDM ¼ ðOs;MsÞ.
Os and Ms denote the set of objects and the union of messages that
exist in the system, respectively. The method for constructing the
OSBDM will be explained using the example in Fig. 5. Fig. 5b shows
the obtained OSBDM by synthesizing the two OBDMs in Fig. 5a.
This OSBDM is composed of Os ¼ fo1; o2; . . . ; o6g and Ms ¼ fðm 2
M of SD sd AÞ [ ðm 2 M of SD sd BÞg. Note that object o1 in SD sd

A and object o1 in SD sd B are instantiated from the same class
c1. Therefore only one o1 remains in the OSBDM. The sending mes-
sage a from o1 in SD sd A and another sending message a0 from o1 in
SD sd B are connected with the corresponding target object o2 in
the OSBDM. If a message m is triggered by another message in
the context of the system by examining the IOD, we set this other
message as a backward navigable message of message m. There is
no such case in this example.
Algorithm 1. RetrieveReachablePathSetðo1; o2 : OÞ

inputOUT  outgoing message set of o1

inputIN  incoming message set of o2

inputRP  ; an array for storing reachable path
/*RP denotes a reachable path*/

input RPS ; a vector for saving a set of reachable paths
output RPS
for all in 2 IN do

for all out 2 OUT do
if in == out then

/*For RPS by the Direct Behavioral Dependency*/
RPS RPS [ fing

else
/*For RPS by the Indirect Behavioral Dependency*/
RP  RP þ fing
While inb! ¼ out&&inb! ¼ ; do

if in ¼¼ out then
RP  RP þ finbg
RPS RPS [ RP
RP  ;
break

else
RP  RP þ finbg
in inb
4.3. Deriving reachable paths

We derive all reachable paths for each pair of objects in the sys-
tem from the OSBDM. Let RPSðoi; ojÞ ¼ fsj s is a reachable path be-
tween source object oi and target object ojg be a set of all the
reachable paths between two objects. To retrieve the RPSðoi; ojÞ,
we start traversing of the OSBDM from a message incoming to ob-
ject oj to a message outgoing from object oi in reverse. When object
oi has a direct behavioral dependency on object oj, one of the
incoming messages to object oj and one of the outgoing messages
from object oi are equal. This message is then added into a set of
reachable paths. On the other hand, when object oi has an indirect
behavioral dependency on object oj, we traverse the OSBDM from
one of the messages incoming to object oj iteratively by substitut-
ing it with a backward navigable message. In doing this, we finally
reach one of the outgoing messages from object oi. The stored se-
quence of messages encountered while traversing is the reachable
path. The method for retrieving a reachable path set from object o1

to object o2 is presented in Algorithm 1. The set of reachable paths
for each pair of objects in Fig. 5b is presented in Table 1.

4.4. Summing weighted reachable paths

Prior to calculating the BDM for every class in the system, we
sum the weighted reachable paths for each pair of objects using
the RPS obtained above. In this process, an object is projected onto



Table 2
SumWRPðci; cjÞ, which is the sum of the weighted reachable paths for each pair of
classes (row: ci , column: cj) and the BDMðciÞ value of each class in Fig. 3(b).

c1 c2 c3 c4 c5 c6 BDMðciÞ

c1 0 0.9 0.5 0.67 0 0.2 2.27
c2 0 0 0.8 1.2 0.8 0 2.8
c3 0 0 0 0.8 0 0 0.8
c4 0 0 0 0 0 0 0
c5 0 0 0 0 0 0 0
c6 0 0 0 0 0 0 0
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the class from which the object is instantiated. In this manner, the
results of the summation of the weighted reachable paths are ob-
tained for each pair of classes.

We formalize the sum of the Weighted Reachable Paths (Sum-
WRP) from class ci to class cj as follows:

SumWRPðci; cjÞ ¼
X

8s2RPSðoi ;ojÞ
DFðsÞ � fmeL � fmeH; ð1Þ

where oi and oj indicate the objects that correspond to projected in-
stances of class ci and cj, respectively. We use three factors for
weighting reachable path s: distance factor, fmeL, and fmeH. We define
a distance factor by DFðsÞ ¼ 1=d, where d is the distance length (i.e.,
the number of messages in the corresponding reachable path s). The
rationale for using the distance factor is that an indirect behavioral
dependency might be weakened by the successive calls. In other
words, the farther an object is from the source of changes, the less
the object is likely to be changed. Therefore, we need to degrade the
impact when the distance of indirect behavioral dependency be-
tween two objects is great. We represent the first message in the
reachable path s as f. Then, fmeL, the probabilistic message execution
rate, and fmeH , the expected message execution rate, are taken into
account as factors for weighting a reachable path.

We explain how to calculate SumWRP using Table 1. To calcu-
late SumWRPðc2; c4Þ, for example, we first obtain reachable paths,
{bc,d}, between object o2 and object o4. We then identify weighting
factors for each reachable path. For reachable path bc, the distance
factor is 1/2, because the number of messages in this reachable
path is 2. The first message of this reachable path is b. Therefore,
bmeL, 1, and bmeH, 0.8, are applied for weighting the reachable path.
For reachable path d, the distance factor is 1; dmeL and dmeH are 1 and
0.8, respectively. Finally, we sum the weighted reachable paths and
obtain SumWRPðc2; c4Þ as follows:

SumWRPðc2; c4Þ ¼ ð1=2� 1� 0:8Þ þ ð1� 1� 0:8Þ ¼ 1:2:
4.5. Calculating the behavioral dependency measure

Finally, the BDM for every class ci in the system is obtained as
follows. Let C ¼ fcij1 6 i 6 ng be all the classes existing in the
system.

BDMðciÞ ¼
X

8cj2C; i–j

SumWRPðci; cjÞ: ð2Þ

Table 2 summarizes the sum of the weighted reachable paths ob-
tained from the OSBDM in Fig. 5b and the BDM of each class in
Fig. 3b. The BDM is used to predict change-proneness; the higher
the class’s BDM, the larger the likelihood the class will be changed.

5. Change-proneness modeling

In this section, we describe the method for building a change-
proneness prediction model. In our study, the change-proneness
is used for predicting change-prone classes in the successive
versions.
5.1. Model construction method

To build the change-proneness prediction model, there are a
large number of modeling techniques from which to choose,
including standard statistical techniques (e.g., logistic regression)
and data mining techniques (e.g., decision trees Han and Kamber,
2006). Multiple linear regression provides a regression analysis of
variance for a dependent variable explained by one or more factor
variables. Hence, we choose a stepwise multiple regression (Ed-
wards, 1976) to build the change-proneness model in this study.
While constructing the regression, we remove outliers that are
clearly over-influential on the regression results. Two kinds of
techniques can be used for outlier analysis: Standard errors of
the predicted values (S.E. of mean predictions) and the Mahalan-
obis distance (Mahalanobis, 1936). The former is an estimate of
the standard deviation of the average value for dependent variable
for cases that have the same values with the independent vari-
ables. The latter is a measure of how much a case’s values on the
independent variables differ from the average of all cases; case
means a data instance for constructing a prediction model. Hence,
we identify and remove the instances that have extremely large
S.E. of mean predictions and large Mahalanobis distance values.
5.2. Model variables

We first collected several data types from the object-oriented
software.

The independent variables include the C&K metrics, Lorenz and
Kidd metrics, MOOD metrics, and the BDM. We collect the C&K
metrics and Lorenz and Kidd metrics using (Together, 2006). These
are the most widely used metrics for evaluating object-oriented
software. The set of metrics used in the case study are listed in
the Appendix. To calculate the BDM, which is measured on UML
models, we have developed a tool built on the EMF (Eclipse Mod-
eling Framework). It imports the UML 2.0 models in the format
of XMI generated from (Rational Software Architect, 2008), an
Eclipse-based UML 2.0 modeling tool made by the Rational Divi-
sion of IBM.

Following a common analysis procedure (Arisholm and Briand,
2006), we first perform a Principal Component Analysis (PCA) to
identify the dimensions actually present in the data relating to
the independent variables. We do not make use of a PCA to select
a subset of independent variables since, as discussed in Briand and
Wust (2002), experience has shown that this usually leads to sub-
optimal prediction models even though regression coefficients are
easier to interpret. The resulting principal components can be de-
scribed in terms of categories such as size, complexity, cohesion,
coupling, inheritance and polymorphism (see the Appendix).

The dependent variable of the model is the change-proneness.
To compute the change-proneness, the change data, which are ob-
tained using a class-level source code diff, are collected for each
application class. Based on this change data, the total amount of
changes (i.e., source lines of code added and deleted) within conse-
quent releases are measured.
6. Case study

This section presents the results of a case study, the objective of
which is to validate the usefulness of the BDM presented above.
The first subsection explains the details of the system. In the next
subsection, the goal of the case study and the validation method
are described. In the third section, results are presented and inter-
preted. The last subsection ends with a discussion.
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6.1. The subject of the case study

In order to investigate whether the BDM is statistically related
to change-proneness, we need a target system that has well docu-
mented UML models with a class diagram, SDs an IOD, and subse-
quent releases for extracting change-related information. For our
experiment, we reverse-engineered the UML design models from
the existing system, JFlex, using a reverse-engineering tool with
manual supports. JFlex is a lexical analyzer generator for Java,
which is written in Java. JFlex takes a specially formatted specifica-
tion file containing the details of a lexical analyzer as input and
creates a Java source file for the corresponding lexical analyzer. A
number of reasons led us to select JFlex for the case study:

� It has evolved through 14 generations (at the time that we con-
ducted this case study) and recorded the history of changes.

� The full source code of each version is available because it is an
open-source project.

� It contains a relatively large number of classes.
� It is mature. The release dates are February 20, 2001 for the ini-

tial version (version 1.3) and January 31, 2009 for the latest ver-
sion (version 1.4.3).

� It was written in Java. Our BDM is applied in object-oriented
software that uses inheritance relationships, so polymorphism
and dynamic binding may occur.

Among the 14 releases of JFlex, version 1.3.5 is not considered
in the case study because the changes made between this version
and version 1.3.4 are negligible. Table 3 represents the number of
ground facts regarding the 13 successive versions of JFlex. The ini-
tial version of JFlex 1.3 consists of 44 Java classes and 1394 reach-
able paths, while the latest version of JFlex 1.4.3 consists of 62 Java
classes and 3319 reachable paths. The total number of reachable
paths can be less than the total number of invoked messages in
each version of the system in the following cases: (1) invoked mes-
sages for which call methods from the library are not considered
(the scope of the measurement is limited to the application classes
Table 3
The number of ground facts regarding 13 subsequent versions of JFlex (versions 1.3–1.4.3

1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.4pre1

Package 3 3 3 4 4 4
Class 44 44 44 48 48 47
Interface 4 4 4 4 4 4
Invoked Message 1768 1828 1828 2042 2048 2071
Reachable Path 1394 1442 1442 2335 2339 2362

Reachable Path 987

lexParse:LexParse cUP$LexParse$actions:CUP$LexParse$actions

alt

[cond = true]

[cond = false]

1: CUP$LexParse$do_action

2: CUP$LexParse$do_action

1: makeclass

2: makeclass

Fig. 6. An SD that was reverse-engineered
of JFlex) and (2) invoked messages for which call methods within
the same class are not considered, since these internal messages
do not cause behavioral dependency.

We collected several types of data (i.e., existing object-oriented
software metrics, the BDM, and change data) for each class from
nine versions of JFlex based on reverse-engineered models. It
should be noted that we collected metrics that are available on de-
sign models. In other words, we did not gather metrics that are
obtainable only from source codes, such as source lines of code
(SLOC), number of fields (NOF), and number of parameters (NOP).
To select classes with a long history of changes, we included the
classes from the initial version that remain in the latest version
(i.e., 42 classes for each version of JFlex). For each version on which
the BDM and other metrics are measured, the change data was
measured by counting the total number of changes in the next four
subsequent versions. This change data is used as change-prone-
ness. We take 9 of the 13 releases into account because the change
data is not available in the last four versions; we finally obtained
378 instances of classes.

We easily reverse-engineered the class diagram from JFlex
source code. On the other hand, reverse-engineering SDs is difficult
and sometimes even impossible (Briand et al., 2003), because an
SD represents the partial behavior of the overall system; SDs can
exist in various forms according to the various users’ view on the
system. Thus, in this case study, we construct the SD for each
reachable path that consists of consecutive invoked messages,
while extracting the structural information from source codes
and reflecting it in the SD as alt, opt, or loop combined fragments.
It should be noted that the SD in UML 2.0 uses the combined frag-
ments to represent one or more sequences (traces) rather than
specifying all the possible scenarios (Rountev et al., 2004). Hence,
we do not need to execute the system and monitor its execution
to retrieve meaningful information and reverse-engineer SDs from
source codes. Fig. 6 shows an example of the reverse-engineered
SD obtained from JFlex version 1.3. This SD corresponds to the
reachable path from the object of the LexParse class to the object
of the Out class with four messages: CUP$LexParse$do_action, make-
).

1.4pre3 1.4pre4 1.4pre5 1.4 1.4.1 1. 4.2 1.4.3

4 5 5 5 5 5 5
47 61 59 59 59 62 62

4 3 3 3 3 4 4
2135 2426 2418 2401 2376 2651 2651
2282 3244 3244 3249 3242 3317 3319

charClasses:CharClasses intCharSet:IntCharSet out:Out

1.1: sub

1.2: sub

1.1.1: dump

1.1.2: dump

from source codes of JFlex version 1.3.



Validation procedure

Collect data
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Identify dimensions of data
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BDM

«datastore»
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«datastore»
Change data

«datastore»
Identified dimensions of data

«datastore»
Clustered membership of data

«datastore»
Change-proneness prediction model

Validate the usefulness of BDM

Fig. 7. A validation procedure followed during in this case study.

Table 4
The analysis-of-variance (ANOVA) table that includes the results for each clustering
variable.

Cluster Error F Sig.

Mean square df Mean square df

MIF 320.333 1 .439 376 729.972 .000
PF 7500.000 1 .383 376 19583.333 .000
DI T .000 1 2.168 376 .000 1.000
NOC .593 1 .673 376 .881 .349
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Class, sub, and dump. By analyzing source code from JFlex 1.3, for
example, we extracted 1394 reachable paths and, at the same time,
constructed 1394 SDs with 1768 messages. The IOD cannot be re-
versed from source codes; it is specified only from the early stages
of software development to help developers get an overview of the
system. Thus, in this experiment, the Expected Execution Rate in
the IOD was not considered when calculating the BDM.

6.2. Goal and validation methodology

The goal of this case study is to confirm that the BDM is a sig-
nificant additional explanatory variable over and above that which
has already been accounted for by other existing metrics when the
system contains complex inheritance relationships and polymor-
phism. It should be noted that the BDM considers dynamic features
(see Section 3.2). As a result, we expect the BDM to more accu-
rately predict behavioral dependency when the system is involved
in a complex dynamic binding occurrence environment. Indeed,
accurate prediction of behavioral dependency helps to construct
a better change-proneness prediction model. In order to achieve
this goal, the validation procedure depicted in Fig. 7 was
performed.

To investigate whether the effect of the BDM is different accord-
ing to intensity of use of inheritance relationships and polymor-
phism, we divide the data set into two groups and independently
build change-proneness prediction models for each group. We
cluster the data into the following groups:

� (Group 1) contains comparatively more complex inheritance
relationships and polymorphism.

� (Group 2) contains comparatively less complex inheritance rela-
tionships and polymorphism.

To classify the data set into these two groups, a clustering tech-
nique was applied. Clustering is also called data segmentation and
is used to partition large data sets into groups according to similar-
ities. Clustering may serve as a preprocessing step for classification,
which would then operate on the detected clusters and the se-
lected attributes or features (Han and Kamber, 2006). We used
K-means clustering (Cios et al., 1998) with four inheritance- and
polymorphism-related metrics: PF (Polymorphism Factor), MIF
(Method Inheritance Factor), NOC (Number of Children), and DIT
(Depth of Inheritance). Table 4 represents the analysis-of-variance
(ANOVA) table that includes the results for each clustering vari-
able. At the a ¼ 0:05 significance level, MIF and PF are significant
explanatory variables to divide the groups since Sig. (p-value)
� 0:000 6 0:05 ¼ a. The descriptive statistics with respect to the
four attributes are provided for Groups 1 and 2 in Tables 5 and 6,
respectively. The classification results show that the classes in
Group 1 have higher PF and NOC values than those in Group 2.
Therefore, Group 1 can be characterized as having more complex
inheritance relationships and polymorphism than Group 2. As
there is not much difference in MIF values and no difference in
DIT values between the two groups, we did not consider these
two attributes for identifying each group’s characteristics. In ana-
lyzing the cluster membership of the classes in JFlex across the
nine versions, we noticed that the classes that developed earlier
tend to belong to Group 1, while the classes that developed later
tend to belong to Group 2. In other words, the JFlex system has
evolved in that it now has less complex inheritance relationships
and polymorphism.

For Groups 1 and 2, we construct two change-proneness predic-
tion models: one between the change and existing metrics and the
other between the change and the BDM in addition to existing
metrics. Consequently, we analyzed four change-proneness predic-
tion models in total. To validate the assertion that the BDM helps



Table 5
Descriptive statistics with respect to the four attributes for Group 1 (294 instances).

N Range Minimum Maximum Sum Mean Std. Variance Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. error Statistic Statistic Statistic Std. error

PF 294 2 36 38 11088 37.71 .041 .701 .491 �2.052 .142
MIF 294 2 70 72 20958 71.29 .041 .701 .491 �.462 .142
NOC 294 5 0 5 84 .29 .051 .882 .778 4.033 .142
DIT 294 5 0 5 210 .71 .086 1.471 2.164 1.864 .142

Table 6
Descriptive statistics with respect to the four attributes for Group 2 (84 instances).

N Range Minimum Maximum Sum Mean Std. Variance Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. error Statistic Statistic Statistic Std. error

PF 84 0 26 27 2268 27.00 .000 .000 .000 .000 .263
MIF 84 1 73 74 6174 73.50 .055 .503 .253 .000 .263
NOC 84 2 0 2 16 .19 .060 .548 .301 2.782 .263
DIT 84 5 0 5 60 .71 .161 1.477 2.182 1.888 .263
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to explain additional variations in change-proneness, we compare
the goodness-of-the-fit of those two models. As a result, it is clear
that the BDM contributes to obtain a better model fit. The results of
the change-proneness prediction models are presented and dis-
cussed in detail in the next subsection.
6.3. Results

6.3.1. Results of the change-proneness prediction models
We evaluated the performance of the prediction models accord-

ing to the goodness-of-the-fit (R-square) and a sequence of the
selection of independent variables. The sequence of the selection
is important because the independent variable that has the largest
positive or negative correlation with the dependent variable is se-
lected at each step in a stepwise selection.

We first present the results of the two regression models ob-
tained from the data set of Group 1. The results of the stepwise
regression using C&K metrics, Lorenz and Kidd metrics, and MOOD
metrics as candidate covariates are presented in Table 7. The pre-
diction model included five variables. The model explains around
57% of the variance of the data set and shows an adjusted R2 of
0.54. The sequence of variables entering into the model is COC,
PProtM, NOC, WMC, and MNOL. The result after including the
BDM in addition to existing metrics to make a prediction model,
we obtain the result as shown in Table 8. Around 64% of the vari-
ance in the data set is explained and an adjusted R2 of 0.63 is ob-
tained. In this model, COC, BDM, PProtM, NOC, MNOL, WMC, and
NORM variables were included in the order of the sequence as
listed. Note that the BDM is the second variable to be included with
significant-level of p-value < 0.00001. Even when accounting for
the difference in the number of covariates, the coefficient of deter-
mination ðR2Þ is increased by 9% (from 0.54 to 0.63) when using the
Table 7
Prediction model using existing metrics in Group 1.

Selected
variables

Unstandardized coefficients Standardized
coefficients

t Sig.

B Std. error Beta

(Constant) .050 .054 .915 .361
COC .050 .011 .215 4.695 .000
PProtM �.010 .004 �.122 �2.809 .005
NOC .199 .042 .204 4.715 .000
WMC �.019 .004 �.399 �4.444 .000
MNOL .114 .030 .249 3.748 .000
BDM. Therefore, this experiment shows that the BDM helps to ob-
tain a better change-proneness prediction model. In other words,
even though the existing metrics still do most of the lifting, the
BDM captures additional dimensions that enable the construction
of a more accurate change-proneness prediction model.

From the data set of Group 2, we also constructed two regres-
sion models, one using only existing metrics for the baseline of
the comparison and the other using the BDM in addition to existing
metrics, to investigate whether the effect of the BDM performs dif-
ferently according to the intensity of inheritance relationships and
polymorphism. In this group, the BDM was not included when con-
structing the regression model. Hence, the results of the two mod-
els are the same. Table 9 shows the results of the prediction model
obtained from Group 2. This model explains the change variance of
around 75% and shows an adjusted R2 of 0.74. The goodness-of-
the-fit of the prediction model in Group 2 is considerably higher
than that of the prediction models in Group 1 because smaller data
instances were used to create the model.
6.3.2. Interpretation of results
In the experiment, we divided the data set into two groups, one

with comparatively more complex and the other with compara-
tively less complex inheritance relationships and polymorphism,
in order to investigate the effects of the BDM according to the
intensity of inheritance relationships and polymorphism. Intensity
of use of inheritance relationships and polymorphism can be ex-
plained through the attributes (i.e., inheritance- and polymor-
phism-related metrics) used for K-means clustering groups; PF
and NOC were used for characterizing each group, as mentioned
in Section 6.2. PF equals the number of actual method overrides
Table 8
Prediction model using existing metrics and BDM in Group 1.

Selected
variables

Unstandardized coefficients Standardized
coefficients

t Sig.

B Std. error Beta

(Constant) .048 .053 .894 .372
COC .050 .011 .214 4.632 .000
BDM .019 .008 .108 2.431 .000
PProtM �.012 .004 �.144 �3.263 .001
NOC .202 .042 .206 4.811 .000
MNOL .120 .029 .264 4.114 .000
WMC �.017 .004 �.361 �3.931 .000
NORM .008 .003 .184 2.465 .014



Table 9
Group 2 prediction model (the result is same whether the BDM is used or not because
the BDM is not included in the model).

Selected
variables

Unstandardized coefficients Standardized
coefficients

t Sig.

B Std. error Beta

(Constant) �1.211 .397 �3.052 .003
NOO �.013 .003 �.307 �4.280 .000
CL .021 .004 .571 5.393 .000
NOIS .816 .107 1.252 7.615 .000
RFC �.139 .024 �.798 �5.832 .000
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divided by the maximum number of possible method overrides
and is calculated as a fraction. The PF value increases as the system
uses method overriding; if the system overrides everything, the PF
is 100%. If subclasses seldom override their parent’s methods, PF
will be low. NOC equals the number of immediate subclasses de-
rived from a base class and measures the breadth of a class hierar-
chy. Conversely, DIT measures the depth. Therefore, it can be
concluded that Group 1 contains relatively complex inheritance
relationships and polymorphism than Group 2 since the former
has higher PF and NOC values than the latter.

It was determined that the BDM is a significant indicator as it
helped to improve the accuracy of change-proneness prediction
in Group 1 only. This result was anticipated because in Group 1,
the system redefines the parent’s methods more often (i.e., high
PF) and inherits parent classes more often (i.e., high NOC) than
the system, in Group 2. In short, Group 1 contains high degree of
inheritance relationships and polymorphism, which may be the
reason for the high probability that dynamic binding will occur.
In Group 2, the BDM could not be selected as a variable to explain
the variances in change-proneness. This indicates that the BDM is
no more useful than existing metrics in systems that contain low
degree of inheritance relationships or polymorphism. By analyzing
the results of the experiment, we reached the conclusion that the
BDM can help accurately predict changes when the system con-
tains high degree of inheritance relationships and polymorphism.
The reason for improving the accuracy of change-proneness pre-
diction is the BDM’s feature enabling a class of the object sending
a message to be bound to the class that actually implements the
method of the message, as mentioned in Section 3.2. To put the
point another way, the BDM is a specific measure for a consider-
ation of the dynamic behavior of the system.
6.4. Discussion

In the case study, we showed that the BDM is the significant
indicator for predicting change-proneness when the system con-
tains high degree of inheritance relationships and polymorphism.
However, it is not possible to determine the exact thresholds of
the system’s high degree of inheritance relationships and polymor-
phism because these thresholds are relative and empirical. How-
ever, we do not need specific guidelines that tell us when to use
the BDM in change-proneness prediction. The BDM is an additional
variable that may be used in conjunction with existing metrics for
explaining variance in change-proneness for systems where dy-
namic binding is likely to occur. When constructing a change-
proneness prediction model, the BDM is not selected if it cannot
capture any features over and above those captured by existing
metrics. In other words, the BDM is selected as a significant vari-
able only if it helps to improve the accuracy of change-proneness
prediction in addition to existing metrics.

In the case study, we used reversed UML models that were ob-
tained from source codes, even though model-based change-
proneness prediction was the goal of the study. This is because,
in practice, most legacy systems which have been developed and
maintained for a long period of time do not have well documented
design models, especially for SDs and IODs. It is worth reiterating
that an IOD is specified from the early stages of software develop-
ment and cannot be reversed from source codes. If an IOD specified
with the Expected Execution Rate in each SD is available, a more
accurate BDM may be obtained. In the future, we plan to use the
UML models which will soon be available from the Repository for
Model-Driven Development (REMODD) project (France et al.,
2007) in order to explore the usefulness of the BDM for model-
based change-proneness prediction.

The fitness of the models for model-based change-proneness
prediction is rather low compared to models for code-based
change-proneness prediction. This is because the information ex-
tracted from UML models is not as sufficient for change-proneness
prediction as the information from source codes. If other metrics
derivable from only source codes were considered when building
the change-proneness prediction model, the R2 values would be
higher. For example, SLOC, which indicates the size of the class,
is known as a significant indicator to affect change-proneness
(Arisholm et al., 2004). Of course, the goal of this study is to deter-
mine whether the BDM helps to obtain a better model fit. There-
fore, we need to see that it provides an improved predictive
model when compared to models considering only existing metrics
that are available on UML models. This provides the benefit of early
change-proneness prediction at the moment a design model be-
comes available, without the necessity of implementing source
codes.

The results from our earlier study (Han et al., 2008) on JFree-
Chart JFreeChart (2005) also showed that the BDM is a strong indi-
cator and complementary to C&K metrics for explaining the
variance of changes. In this paper, we performed the new experi-
ment to compare the effect of the BDM with varying degrees of
inheritance relationships and polymorphism. We used another sys-
tem, because complex dynamic bindings may not occur in the sys-
tem examined in the previous study, JFreeChart, since it is the
graphic library for generating various types of charts. In other
words, in JFreeChart, dependencies occurred by method calling
would be simple.

In our previous paper, we only used C&K metrics as the existing
metrics. However, in this case study, we used more metrics to con-
firm that the BDM is effective with regard to change-proneness
prediction.
7. Conclusion and future work

In this paper, we proposed the BDM which was obtained from
UML design models of object-oriented software for improving
accuracy over existing metrics when predicting change-prone clas-
ses. We first provided the definitions of behavioral dependencies
and suggested a systematic approach for calculating the BDM
based on the defined behavioral dependencies. We then performed
a case study to evaluate that the BDM is a useful and complemen-
tary indicator for change-proneness prediction when the system
contains complex inheritance relationships and polymorphism.
The results of the case study show that the BDM is the specific
measure for considering the dynamic behavior of the system.

Model-based change-proneness prediction using the BDM has
several advantages, even though the goodness-of-the-fit of the
model-based change-proneness prediction may be lower than that
of code-based change-proneness prediction. In the early stages of
development, model-based change-proneness prediction can pro-
vide a way to modify the current design or allow users to choose
design alternatives in a relatively easy and inexpensive manner;
using the BDM is certainly more cost-effective than reworking
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the implemented system. Model-based change-proneness predic-
tion can also help users better understand the software by visual-
izing the locations of changes on UML design models.

Our future work will include the followings: (1) extending the
BDM to take into account other dependency attributes such as
time; (2) investigating other applications of the BDM, such as
fault-proneness prediction or object allocation in a distributed sys-
tem; (3) visualizing change-prone classes on a modeling tool such
as Rational Software Architect; and (4) confirming the BDM’s use-
fulness by applying it to a system that has maintained UML docu-
ments and change logs of released versions.
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Appendix A. Object-oriented metrics definition
Metrics
 Category
 Description
 Definition
CBO
 Coupling
 Coupling
between
objects
Represents the number
of other classes to which
a class is coupled to
CL
 Cohesion
 Class locality
 Is computed as the
relative number of
dependencies that a
class has in its own
package
COC
 Coupling
 Clients of class
 Is the number of classes
that use the interface of
the measured class
DIT
 Inheritance
 Depth of
inheritance
Is the length of the
inheritance chain from
the root of the
inheritance tree to the
measured class
LCOM
 Cohesion
 Lack of
cohesion in
methods
Is the number of pairs of
methods in the class
using no attribute in
common minus the
number of pairs
methods that do
MIF
 Inheritance
 Method
inheritance
factor
Is the sum of inherited
methods over total
methods available in
classes
MNOL
 Maximum
 Maximum
number of
levels
Counts the maximum
depth of if, for and while
branches in the bodies
of methods
MSOO
 Maximum
 Maximum
size of
operation
Counts the maximum
size of operations for a
class
NOAM
 Polymorphism
 Number of
added
methods
Counts the number of
operations added by a
class
NOC
 Inheritance
 Number of
children
Counts the number of
classes directly or
indirectly derived from
the measured class
NOIS
 Size
 Number of
import
statements
Counts the number of
imported packages/
classes
Appendix A (continued)
Metrics
 Category
 Description
 Definition
NOO
 Size
 Number of
operations
Counts the number of
operations
NOOM
 Polymorphism
 Number of
overridden
methods
Counts the number of
inherited operations,
which a class overrides
NORM
 Complexity
 Number of
remote
methods
Processes all methods
and constructors and
counts the number of
various remote methods
called
PF
 Polymorphism
 Polymorphism
factor
Is the number of actual
method overrides
divided by the
maximum number of
possible method
overrides
PPrivM
 Ratio
 Percentage of
private
members
Counts the percentage
of private members in a
class
PProtM
 Ratio
 Percentage of
protected
members
Counts the percentage
of protected members in
a class
PPubM
 Ratio
 Percentage of
public
members
Counts the percentage
of public members in a
class
RFC
 Coupling
 Response for a
class
Counts the number of
methods in the response
set for a class, which
includes the number of
methods in the class and
the number of remote
methods invoked by the
methods in the class
WMC
 Complexity
 Weighted
methods per
class
Is the sum of the
complexity of all
methods for a class
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