Ahrim Han, Ph.D.

PRIVACY ENGINEER · MACHINE LEARNING ENGINE

Irvine, CA (US Permanent Resident / Green Card Holder)

🛛 (+1) 949-910-8751 📔 🛛 ahrimhan@gmail.com 📔 🏠 ahrimhan.github.io 📔 🖸 ahrimhan 📔 🖬 ahrimhan

Summary.

I am transitioning from academia to industry to work as a **privacy engineer**. My research area is software engineering in computer science, and I have been worked for software quality-driven development. Over the past 15 years, I develop methods and tools for **assessing and improving software design and code quality** based on **statistics** and **machine learning** techniques. The main focus of my research is on **optimization** and **prediction**. Recently, I have completed the boot camp for the **data science** career track and performed projects specialized in **deep learning**. I am interested in integrating privacy practices into the software development lifecycle. I am particularly interested in researching and participating in open source projects related to differential privacy, federated learning, and potential privacy risk prediction.

Education

Korea Advanced Institute of Science and Technology (KAIST)

PH.D., COMPUTER SCIENCE

Korea Advanced Institute of Science and Technology (KAIST)

M.S., COMPUTER SCIENCE

Sogang University

B.E., COMPUTER SCIENCE

Projects

Data Anonymization for Privacy

- De-identifying sensitive data by implementing anonymization techniques (e.g., generalization for bucketing, suppression, and pseudonymization)
- Implemented the k-anonymity and the data loss for measuring privacy and removal degree of anonymized data
- Observed the accuracy of machine learning models built with data of different levels of privacy (including differential privacy technique)

Sentimental Analysis of Movie Reviews using a Deep Learning Neural Network (Springboard)

- Built the Convolutional Neural Network (CNN) deep learning models with Keras for classifying the sentiment expressed in texts of movie reviews
- Compared various models by observing the parameters affecting the performance in accuracy and discussed the overfitting

Prediction of Scores for Public Schools in California (Springboard)

- Applied data science-related techniques for data wrangling, exploratory data analysis, data visualization, and machine learning modeling
- Provided the prediction models using the regression and classification algorithms for finding the inferior schools that need help

Verification via Context-Aware Testing (Korea University)

- Developed the test case generation algorithm by inferring the resources from the permissions used for running Android applications
- Generated test cases by permuting different resource conditions and prioritized the test cases by weighting the criticality of each resource

Recommendation for Software Design Quality Improvement (Korea University)

- Developed an efficient refactoring recommendation system to help software developers make code changes easier
- Developed a fast refactoring candidate assessment method for measuring maintainability using the matrix computation in order to increase the efficiency of the heavy computation when evaluating a large number of refactoring candidates
- Devised the two-phased assessment approach to improve the efficiency of the refactoring selection process by the search space reduction
- Increased the speed 13.5 (max) times faster compared to the no-reduction approach while still achieving the same amount of improvement

Bad Smell Detection for Refactoring Candidate Identification (KAIST)

- Developed a bad smell (e.g., Feature Envy) detection algorithm to identify refactoring candidates in most frequently used or really in use
- Used the dynamic-profiling technique for extracting run-time information when building the traceability relationships of software entities

Detecting Implied Scenarios (KAIST)

- Developed the algorithm for detecting unexpected behaviors in designs deviated from the contract specifications without state explosion problems
- Used the model checking technique on synthesized scenarios to check the properties extracted from the specifications

Change Proneness Prediction (KAIST)

- Developed a prediction model to help developers to identify the change-prone components and modify them for the better designs
- Devised the new behavioral dependency metrics capturing the dynamic aspects of the program for building a multiple linear regression model
- Increased the model accuracy (R-square) by 8% over the model using only metrics capturing program structures

Daejon, South Korea Feb. 2007 - Aug. 2013

Daejon, South Korea Sep. 2004 - Feb. 2007

Seoul, South Korea Feb. 2000 - Feb. 2004

Feb. 2020 - May. 2020

Oct 2018 - Jun 2019

Sep. 2014 - Aug. 2015

Sep. 2013 - Apr. 2018

vin uso

Mar. 2010 - Aug. 2011

Mar. 2006 - Feb. 2010

Mar. 2019 - Jul. 2019

. ...

Sep. 2011 - Aug. 2013

Experience

Springboard

DATA SCIENCE CAREER TRACK FELLOW (DEEP LEARNING SPECIALIZATION)

- Mastering skills in Python, SQL, data wrangling, data visualization, exploratory data analysis, and machine learning, and deep learning methods
 Performed two data science-related capstone projects:
- "Prediction of Scores for Public Schools in California" and "Sentiment Analysis of Movie Reviews using a Deep Learning Neural Network"

Korea University

RESEARCH PROFESSOR

- Advised graduate students to develop research topics and conduct the experiments
- Awarded \$158K in grants from the National Research Foundation of Korea (NRF) as a sole Principal Investigator
- Led the research projects and published the results in the top tier journals (e.g., IEEE Transactions on Software Engineering)

Korea Advanced Institute of Science and Technology (KAIST)

GRADUATE RESEARCHER

- Mentoring and taught computer science courses: "Introduction to JAVA programming" and "Capstone Projects in CS"
- Actively performed the research projects and implemented metric measurement tools using Java and Python

Peace Corps

INTERN

• Served in organizing and populating the intranet web pages in the Technical Infrastructure and Support Team

Skills_

Data Analysis, Visualization, and Modeling: Pandas, Numpy, Scipy, Matplotlib, Pyplot, Seaborn, Scikit-Learn, PySpark, NLTK Statistical Methods and Machine Learning: Classification, Regression, Clustering, Hypothesis Testing, Keras, Tensorflow, Deep Learning Programming Languages and Tools: Python, SQL, Java, R, UML, Fortran, Assembly, Markdown, Latex, SPSS, Jupyter Notebook, Visual Studio Code Research Areas: Software Engineering, Software Quality Driven Development, Change Impact Analysis, Metrics, Software Quality Assessment, Software Design Improvement, Refactoring, Design Patterns, Prediction, Optimization, Natural Language Processing

Publications_

[1] A. Han and S. Cha, "Two-phase Assessment Approach to Improve the Efficiency of Refactoring Identification," IEEE Transactions on Software Engineering, Vol. 44, No. 10, pp. 1001 - 1023, Oct. 2018.

[2] **A. Han**, D. Bae, and S. Cha, "An efficient approach to identify multiple and independent Move Method refactoring candidates," Information and Software Technology, Vol. 59, pp. 53-66, Mar. 2015.

[3] K. Song, **A. Han**, S. Jeong, and S. Cha, "Generating various contexts from permissions for testing Android applications," Proceedings of the 27th International Conference on Software Engineering and Knowledge Engineering, pp. 87-92, Jul. 2015.

[4] **A. Han** and D. Bae, "An efficient method for assessing the impact of refactoring candidates on maintainability based on matrix computation," Proceedings of the 21st Asia-Pacific Software Engineering Conference, pp. 453-460, Dec. 2014.

[5] **A. Han** and D. Bae, "Dynamic profiling-based approach to identifying cost-effective refactorings," Information and Software Technology, Vol. 55, No. 6, pp. 966-985, Jun. 2013.

[6] I. Song, S. Jeon, **A. Han**, and D. Bae, "An approach to identifying causes of implied scenarios using unenforceable orders," Information and Software Technology, Vol. 53, No. 6, pp. 666-681, Jun. 2011.

[7] **A. Han**, S. Jeon, D. Bae, and J. Hong, "Measuring behavioral dependency for improving change-proneness prediction in UML-based design models," Journal of Systems and Software, Vol. 83, No. 2, pp. 222-234, Feb. 2010.

[8] **A. Han**, S. Jeon, D. Bae, and J. Hong, "Behavioral Dependency Measurement for Change-proneness Prediction in UML 2.0 Design Models," Proceedings of 32nd Annual IEEE International Conference on Computer Software and Applications, pp. 76-83, Jul. 2008.

Honors and Awards

2014 - 2017 Individual Basic Science Research Grant, National Research Foundation of Korea (NRF), Principal Investigator, \$125,000
 2016 Best Paper Award, Software Engineering Society of Korean Institute of Information Scientists and Engineers, Prize: \$1,000

2013 - 2014 **Post-Doctoral Fellowship Grant**, National Research Foundation of Korea (NRF), **Principal Investigator**, **\$33,000**

2011 - 2012 SAMSUNG Graduate Fellowship, SAMSUNG Electronics by Video Display Division

Sep. 2013 - Apr. 2018

Seoul, South Korea

Oct. 2018 - Aug. 2019

Daejeon, South Korea Mar. 2005 - Aug. 2013

Washington, D.C., USA Aug. 2004 - Oct. 2004