
An efficient method for assessing the impact of 
refactoring candidates on maintainability 

based on matrix computation

Ah-Rim Han1, Doo-Hwan Bae2

1. Korea University, South Korea
2. KAIST, South Korea

2014. 12. 4



Contents
• Introduction
• Overview
• Calculating Delta Table
• Evaluation
• Conclusion and Future Work

2



Refactoring in Practice
• Why need refactoring?

– Design quality of the software degrades overtime
– Helps better accommodate changes, fix bugs, and reduce 

maintenance costs

• Although refactoring is beneficial, it is not widely used
– Lack of systematic methods and tool support
– Difficult to decide

• Where to apply which refactoring
• Which refactorings should be applied first
• Which refactoring is better 
• …

3

→ Need to automate the “refactoring identification 
process”



Studies on Automating 
Refactoring Identification Process

4

Source Code

Refactoring Candidate

Identification

Assessment

Selection

Refactoring

Stop
No Improvement

• Stepwise selection approach
[Han et al. 2013, Tsantalis et al. 
2009]

• Search-based refactoring
[Seng et al. 2006, Lee et al. 2011, 
O’Keefee et al. 2008]

à A large number of refactoring 
candidates needs to be examined

Stepwise selection approach



Motivation
• The cost for assessing refactoring candidates is computation-

intensive
• For quantifying and ranking refactoring candidates,

– Each refactoring candidate is actually or virtually applied
– Metrics of all classes existing in a system should be calculated

• For obtaining each metric of a class, all the relations between inner 
entities or outer entities should be examined

5

à Entity Placement Metric (EPM) [Tsantalis et al. 2013]

EPM for a class

à We need an efficient (fast 
and cheaper) method for 
assessing the impact of 
refactoring candidates, even 
there is loss of precision



Goal and Our Approach

6

à We provide an efficient method for refactoring 
candidates

• Using a more simplistic design model
• Performing fast matrix-based computations

à In search-based software engineering (SBSE) community 
[Harman et al. 2013], they address the need for new forms 
of surrogate metrics

• Retain the essence of computationally expensive metrics
• Even sacrifice some degree of precision (for performance) 
• Can be used to cheaply assess an approximate fitness to guide 

a search based approach



Overview : 
Refactoring Effect Assessment Method

7

Refactoring Effect Assessment Method

Creating Link Matrix Creating Membership 
Matrix

Link Matrix Membership Matrix

Deriving Delta Table

Object Oriented Source Code

Design Model

Assessment

Delta Table



Overview : 
Refactoring Effect Assessment Method

8

Refactoring Effect Assessment Method

Creating Link Matrix Creating Membership 
Matrix

Link Matrix Membership Matrix

Deriving Delta Table

Object Oriented Source Code

Design Model

Assessment

Delta Table

G = (V, E)
V = {methods, attributes}
E = {method calls, 
attributes accesses}



Overview : 
Refactoring Effect Assessment Method

9

Refactoring Effect Assessment Method

Creating Link Matrix Creating Membership 
Matrix

Link Matrix Membership Matrix

Deriving Delta Table

Object Oriented Source Code

Design Model

Assessment

Delta Table

∆ dependency



How to Use in the Entire 
Refactoring Identification Process

10

Source Code

Refactoring Candidates

Identification

Assessment

Selection

Refactoring

Stop
No Improvement

move method 
method m3 to class A

∆ dependency



Calculating Delta Table(1/4)
• Link matrix (L)

– L(e1, e2): entity e1 has a link to entity e2

• Membership matrix (M)
– M(e, C): entity e is placed in class C

11

Internal	link	matrix	(LInt) External	link	matrix	(LExt)

Membership	matrix	(M)



Calculating Delta Table(2/4)
• Projection matrix (L Ⅹ M = P)

– P(e1, C): entity e1 has a link to an entity which is placed in class C

12

Internal	projection		
matrix	(PInt)

External	projection	
matrix	(PExt)



Calculating Delta Table(3/4)
• Inverse function: Inv(PInt)

– PInt[e1, C1] = N > 0 à internal link(s) exists from entity e1 to class C1

– To simulate the effect of the application of moving entities

13

à Therefore, moving the entity e1 to other classes will potentially 
increase the external link(s) in the system

à We use the inverse function to inverse the values of entries in PInt
∴ PInt[e1, C1] ß 0, PInt[e1, c (c ∈ all classes & c ≠ C1)] ß N

Inverse func.

Internal	projection		matrix	(PInt) Inversed Internal	projection		matrix	Inv(PInt)



Calculating Delta Table(4/4)
• Formulation 

– PInt = LIntⅩ M ; PExt = LExtⅩ M ; D = Inv(PInt) - PExt

14

Delta	Table	(D)



Evaluation
• Research questions

1) Efficiency: By how much our method is efficient for assessing 
the impact of refactoring candidates?

2) Usefulness: Does the refactoring identification approach 
based on our method help improve maintainability?

• Comparators
– Delta Table (our approach) vs. EPM [Tsantalis et al. 2009]

• Experimental subjects

15

Name (Version) jEdit (jEdit-4.3) Columba (Columba-1.4)
Type Text editor Email clients

Class # 952 1506

Methods # 6487 8745

Attributes # 3523 3967



Results: Total Time

16

1) Total time : our approach (delta table) < approach with EPM

1)

2)

4) Rate of increased time with respect to the system size is much less in 
our approach (e.g., for jEdit at 90 iterations, our approach: 154.63[sec], 
approach with EPM: 28,622[sec])

2) Max. time per iteration in our approach is the time taken for the first 
iteration (e.g., constructing design model, link and membership matrices)
3) As system become larger (jEdit: 952, Columba: 1506 classes), 
computation time is increased

3)

4)



Results: Maintainability Improvement

17
• The values of maintainability evaluation functions for our approach are 

increased in both projects (jEdit and Columba)

• Columba• jEdit

Delta table

Delta table



Conclusion and Future Work
• Summary

– Propose an efficient method for assessing the impact of 
refactoring candidates faster

• Future Work
– Correlation analysis with the existing metrics
– Trade-off analysis between precision and speed
– Scalability tests

• To investigate the capability of assessing a large number of 
refactoring candidates

18



References
• [Harman et al. 2013] Dynamic adaptive search based software engineering needs 

fast approximate metrics, in Proceedings of the 4th International Workshop on 
Emerging Trends in Software Metrics.

• [Tsantalis et al. 2009] Identification of move method refactoring opportunities, IEEE 
Transactions on Software Engineering. 

• [O’Keeffe et al. 2008] Search-based refactoring for software maintenance, The 
Journal of Systems & Software. 

• [Lee et al. 2011] Automated scheduling for clone-based refactoring using a competent 
GA, Softw., Pract. Exper. 

• [Seng et al. 2006] Search-based determination of refactorings for improving the class 
structure of object-oriented systems, Proceedings of the 8th annual conference on 
Genetic and evolutionary computation.

• [Han et al. 2013] Dynamic profiling-based approach to identifying cost-effective 
refactorings, Information Software and Technology

• [Bonja et al. 2006] C. Bonja, E. Kidanmariam, Metrics for class cohesion and 
similarity between methods, in: Proceedings of the 44th Annual Southeast Regional 
Conference

19



Thank you.

20


