Behavioral Dependency Measurement
for Change-proneness Prediction
in UML 2.0 Design Models

Ah-Rim Han

Department of Computer Science,
Korea Advanced Institute of Science and Technology

KAISTO.

SE LA

KAIST Software Engineering Lahnratury

COMPSAC 2008, Turku, Finland
July 29, 2008

© KAIST SE LAB 2008

“* Introduction

“» Goal of Our Research

<* Change-proneness Prediction

“» Overview of Our Approach

<» Behavioral Dependency Measurement
<» Case Study

“» Related Work

«» Conclusion and Future Work

2/24

Introduction

<» Software changes either to enhance the
functionality or to fix bugs

“*Some part of the software may be more prone to
be changed than others

< Ildentifying the parts which are more prone to be
changed, change-proneness, can be helpful

= Ex) Re-design the classes which are sensitive to
change in OO

3/24

Motivation (1/2)

“» Several research efforts for predicting change-
prone classes have been made on source codes

Change-

feedback - - - - proneness
\ Prediction
| T
! T feedback
v \
Planning [P Re::;rleyrsr::nt — Design —»| Implementation

l !

Testing &
Integration

Maintenance |d€— Release 4— Evaluation |€—

A
l feedback
(]

Change-
proneness
Prediction

Change-proneness prediction in Software Development Life Cycle (SDLC)

“*What if change-prone classes can be predicted

earlier phase in the SDLC...? /
4/24

Motivation (2/2)

<» Benefit of model-based change-proneness
prediction
= Constructing a flexible and stable software would be
much easier

« By modifying the current design before implementing to codes
« By making a decision among candidate design models

= Development cost would be reduced

« Largest percentage of software development effort is spent on
rework and maintenance

5/24

Goal of Our Research

< Provide the Behavioral Dependency Measure
(BDM) for change-proneness prediction

= Based on UML 2.0 design models

» Sequence diagram (SD), Class diagram (CD) and Interaction
overview diagram (I0OD)

= Based on behavioral dependencies of pairs of objects

6/24

Change-proneness Prediction (1/4)

“* Assumption
= Changes occur by change propagation

= Changes can be predicted by examining dependencies
of pairs of objects

= When an object sends a message to the other object,
modifying the object receiving the message may affect
the object sending the message

= High intensity of a dependency represents high
possibility of changes to be occurred

7/24

Change-proneness Prediction (2/4)

< Definition
= An object sending a message has a behavioral
dependency to the object receiving the message

 Direct behavioral dependency
* Indirect behavioral dependency

Sequence Diagrams (SDs)

8/24

Change-proneness Prediction (3/4)

» Strategies for accurate prediction

= Execution rate of a message

* Probabilistic aspect
— Branch control structure (alt combined fragment in a SD)

SDB)
| o1:ct | |02:02 | | 03:c3 |

* Expected aspect
— Operational profile in the 10D l

vV N~y
refA refB

(ERS =0.8) (ERS =0.2)

Qf 9/24

Change-proneness Prediction (4/4)

«» Strategies for accurate prediction (Cont'd)
= |nheritance and polymorphism

Class B{
SD Ex J void mb(){ A
A a; a’
b:B aA a.ma'(); +ma'()
mb0, T oo | }} Zﬁ 0
_______ B A
<
+mb()
_ Object Behavioral
Class Diagram (CD) Dependency Graph

(OBDG)

10/24

Overview of Our Approach

“» Model-based change-proneness prediction

CD

SD

Behavioral Dependency Measurement

Reachable
Path Set
Deriving all the Summing the number of

Reachable Paths > weighted Reachable Paths [<
for all object-pair J t for all class-pair J

N
OSBDG Sum of the
Synthesizing OBDGs into Welg:teb‘lj
Object System Behavioral "eatﬁ able
Dependency Graph paths I

N

Calculating Behavioral
OBDGs Dependency Measure for

\(Constructing Object Behavioral

10D

] every class in the system

/ BDMs /

,L Dependency Graph for each SD

[Predicting change-proneness 1

11/24

Constructing OBDG and OSBDG (1/2)

<+ Constructing OBDG for each SD ; % .

ref ref
| SDA) DB Tsés =0.8) _(E)RS =0.2)

o1:c1 | | 02:c2 || 03:c3 | | 0d:c4 || 05:c5 ol:ic1 | | 02:c2 | | 03:c3
I a | | g | |
— b c LZ:D | |IOD

[
I
| l || cb
I
| I +9()Z>
- |
>£| cl c2)
1 +a() o0
V
c5 J c3 +d0)
+() +b() CD

OBDG,4 = {O,M}, where
* O: objects in the SD A
oe M: mn(mb’mmebmmeH)

- m,: message name
- m,: instance of a backward navigable message
- M, - probabilistic execution rate in SD

- M.y €Xpected message execution rate in |[OD

12/24

Constructing OBDG and OSBDG (2/2)

<+ Synthesizing OBDGs into OSBDG

OBDG,

a(-,1,0.8)

c(b,1,0.8)

(
b(a,1 ,0.8)

d(a,1,08 @ b 0502
al-, 102)_,‘

OBDGg

a'(-, 0502

Jv

OSBDG

b’(-,0.5,0.2)

b(a,1,0.8)
0502

c(b,1,0.8)

a108

108 108

13/24

Where we are now

“*Model-based change-proneness prediction

4 Behavioral Dependency Measurement)

Reachabl
Deriving all the :aat(;-, gete

Reachable Paths
for all object-pair

Summing the number of
weighted Reachable Paths

for all class-pair

Sum of the
ighted
Synthesizing OBDGs into rea :f;'gl e ?) aths
Object System Behavioral

Dependency Graph

Calculating Behavioral
Dependency Measure for
every class in the system
Constructing Object Behavioral

Dependency Graph for each SD

Predicting change-proneness

Deriving Reachable Paths

<+ Deriving all reachable paths for all pair of objects
In the system using OSBDG

SDA SDB

o1:c1 | | 02:c2 || 03:c3 | | 0o4:c4 || 05:c5 ol:c1 | [02:c2 | | 03:c3

Ma10&
g(102) a(osoa

d(a,1,0.8)

a(-,1,0.8) (- 108)/"‘

An example of reachable path set from 01 and o3 : {ab, b’}

15/24

Where we are now

“» Model-based change-proneness prediction

Behavioral Dependency Measurement
Reachable
Path Set
Deriving all the Summing the number of
Reachable Paths > weighted Reachable Paths <
CcD . . .
for all object-pair for all class-pair
N
OSBDG
Sum of the
—— . . weighted
Synthesizing OBDGs into reachable
SD Object System Behavioral aths
s Dependency Graph P v
A Calculating Behavioral
OBDGs Dependency Measure for
every class in the system
|OD \(Constructing Object Behavioral
,L Dependency Graph for each SD / BDMs /

[Predicting change-proneness 1

16/24

Calculating BDM (1/2)

<*Summing the number of weighted reachable
paths for all pair of classes in the system

SumWRP(cl,2) = > DF(8)X fnerr X fimeL
Vse RPS(01,02) Receiver

classes

OSBDG b'(-0.5,0.2) - os c1]c2 [c3 [ea] 5 [c6
b(a.1.0.8) c(b,1.0.8) c1|o |09 |05 [067 |0 |02
a,’l,u.

9(-1.02) [a'(-05,02) (03) (04) B2 o0 [0 [os 20 0s [0

Q R Sender | 3|0 |0 0 0* 0 0

@ @ d(a,1,0. 8) classes c4|0 |0 0 0/ 0 0

5|0 [0 [0 A 0o |o

a(-,1,0.8) -1,0.8) —
6|0 |0 o |o |o

Since RPS(02,04) = {bc, d}, SuUmWRP(c1,c2) = (2x0.8x 1)+ (1 x0.8x 1)

« DF(s) = 1/d

- d: distance length which is the number of messages in the corresponding reachable paths

Calculating BDM (2/2)

<+ Calculating BDM for every class in the system

| BDM(cl)lz Z SumW RP(cl,c,)

Receiver
classes

cl | c2 c3 c4 c5 c6 BDM(c)
c1 |0 [09 [05 [067 [0 |02 2.27
c2 |0 [0 |08 [12 |08 |0 2.8
Sender c3 |0 |0 |o 08 |0 |o 0.8
classes "2 To |0 |o |o o |o
cs |0 |0 |o 0 0o |o
c6 |0 |0 |0 0 0o |o

Therefore, the class c2 is likely to be changed most in the system.

18/24

Case Study (1/4)

< Goal
= To show that BDM is the useful and additional
explanatory variable for change-proneness prediction

“» Experiment Design

= Make two multivariate regression models with different
Independent variable set
* Only C&K metrics* vs. BDM in addition to C&K metrics

= Compare goodness of the fit of those models

* S. Chidamber, C. Kemerer, and C. MIT. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6) : 476—493, 1994.

19/24

Case Study (2/4)

+» Studied Environment
* |nput model: JFreeChart

* |s an open-source Java class library for generating various
types of charts
» Reversed codes (ver. 1.0.0) into UML models
— 10D is not applicable
— CD is generated from RSA 7.0

— SD is constructed based on successive synchronous calls (i.e.,
reachable paths)

] wmp:WaferMapPiot || wmds:WaferMapDataset | dkv2D:Defaultkeyedvalues2D

| NavigablePath2203

1: getChipValue .
[condition==true] 1.1: getvalue

SD reversed from the

[condition==true]

— successive
: 7 pte - synchronous calls
@ o existed in JFreeChart
— 12 setvae source codes

20/24

Case Study (3/4)

<» Studied Environment (Cont'd)

= Tool: BADAMO (BehAvioral Dependency Analyzer of
UML MOdels)

e Calculates the BDM

* Is implemented based on EMF (Eclipse Modeling Framework)
* Imports UML 2.0 models in the format of XMl generated from
RSA (Rational Software Architect) 7.0

= Method for building prediction model: stepwise multiple
regression
« Dependent variable: change-proneness

— Total amount of changes (source lines of code added and deleted)
across the six releases (v.1.0.1 ~ 1.0.6)

* Independent variables
— C&K metrics (NOC, DIT, WMC, RFC, CBO, LCOM) and BDM

21/24

Case Study (4/4)

+» Results

= Models with only C&K = Model with BDM in addition
metrics to C&K metrics

» Explains around 56% » Explains around 64% (adjusted
(adjusted R? of 0.55) R? of 0.64)
* Selected variables » Selected variables

— WMC (1st), CBO (2n9), — WMC (1st), BDM (2"¢), CBO
and LCOM (31) (3r¢), LCOM (4t), and NOC (5t")

Coefficients with Error Bars Coeff. t_stat p-val Coefficients with Error Bars Coeff. t_stat p-val
NOC r - O 1 2.84325 1.7194 0.086a| NOC | : ® 1 3.66851 2.3862 0.0175
: L —e ,
DIT T ~— {1 -1.76s55 -0.6719 o0.s021| °7 ; 121297 0.4914 - 0.6234
: WMC —C—] 0.609115 1.9408 0.0531
WMC 5 - . 2.69983 14.6858 0.0000 :
: CBO [: —] 3.23123 7.2421 0.0000
CBO : —— . 2.67381 5.6984 0.0000 :
: RFC T - 4 -0.0815212 -0.3187 0.7502
RFC | - { - - E
: 0.352029 -1.2967 0.1956) | . T v R e
LCOM - . 1 -0.416265 -3.3761 0.0008| gpm | ° 1 0.0376379 7.7577 0.0000
1 1 L L 1 L L L 1 1 L 1 1
-8 -6 -4 -2 0 2 4 6 -4 -2 0 2 4 6

R? is increased by 9 percent or 20 percent of the unexplained variance using BDM.
22 /24

Conclusion

“*Model-based change-proneness prediction using
BDM

= Help to redesign the change-prone classes easily
* Make a stable software
* Reduce the development cost of software

= Can be used to visualize the problematic spots
* Improve understandability of software

23/24

Future Work

“* Extend BDM to take into account other
dependencies

= Time, etc.
“* Investigate other applications of BDM

= Fault-proneness prediction, object allocation in a
distributed system, etc.
“*Visualize change-prone classes on the modeling
tools

= Rational Rose, ArgoUML, RSA (Rational Software
Architect), etc.

24/24

Thank You .

© KAIST SE LAB 2008

