
Behavioral Dependency Measurement
for Change-proneness Prediction

in UML 2.0 Design Models

Ah-Rim Han

ⓒ KAIST SE LAB 2008

Department of Computer Science,
Korea Advanced Institute of Science and Technology

COMPSAC 2008, Turku, Finland
July 29, 2008

2/24

Contents

vIntroduction
vGoal of Our Research
vChange-proneness Prediction
vOverview of Our Approach
vBehavioral Dependency Measurement
vCase Study
vRelated Work
vConclusion and Future Work

3/24

Introduction

vSoftware changes either to enhance the
functionality or to fix bugs

vSome part of the software may be more prone to
be changed than others

vIdentifying the parts which are more prone to be
changed, change-proneness, can be helpful
§ Ex) Re-design the classes which are sensitive to

change in OO

4/24

Requirement
Analysis Design Implementation

Testing &
Integration

Planning

Release EvaluationMaintenance

Change-
proneness
Prediction

feedback

Motivation (1/2)

vSeveral research efforts for predicting change-
prone classes have been made on source codes

vWhat if change-prone classes can be predicted
earlier phase in the SDLC…?

Change-proneness prediction in Software Development Life Cycle (SDLC)

Change-
proneness
Prediction

feedback

feedback

5/24

Motivation (2/2)

vBenefit of model-based change-proneness
prediction
§ Constructing a flexible and stable software would be

much easier
• By modifying the current design before implementing to codes
• By making a decision among candidate design models

§ Development cost would be reduced
• Largest percentage of software development effort is spent on

rework and maintenance

6/24

Goal of Our Research

vProvide the Behavioral Dependency Measure
(BDM) for change-proneness prediction
§ Based on UML 2.0 design models

• Sequence diagram (SD), Class diagram (CD) and Interaction
overview diagram (IOD)

§ Based on behavioral dependencies of pairs of objects

7/24

Change-proneness Prediction (1/4)

vAssumption
§ Changes occur by change propagation

§ Changes can be predicted by examining dependencies
of pairs of objects

§ When an object sends a message to the other object,
modifying the object receiving the message may affect
the object sending the message

§ High intensity of a dependency represents high
possibility of changes to be occurred

8/24

Change-proneness Prediction (2/4)

vDefinition
§ An object sending a message has a behavioral

dependency to the object receiving the message
• Direct behavioral dependency
• Indirect behavioral dependency

Sequence Diagrams (SDs)

9/24

Change-proneness Prediction (3/4)

vStrategies for accurate prediction
§ Execution rate of a message

• Probabilistic aspect
– Branch control structure (alt combined fragment in a SD)

• Expected aspect
– Operational profile in the IOD

10/24

Change-proneness Prediction (4/4)

vStrategies for accurate prediction (Cont’d)
§ Inheritance and polymorphism

Class Diagram (CD)
Object Behavioral
Dependency Graph
(OBDG)

11/24

Overview of Our Approach

vModel-based change-proneness prediction

CD

SD

IOD

Deriving all the
Reachable Paths
for all object-pair

Synthesizing OBDGs into
Object System Behavioral

Dependency Graph

Constructing Object Behavioral
Dependency Graph for each SD

Predicting change-proneness

Calculating Behavioral
Dependency Measure for
every class in the system

Summing the number of
weighted Reachable Paths

for all class-pair

Behavioral Dependency Measurement

OBDGs

OSBDG

Reachable
Path Set

BDMs

Sum of the
weighted
reachable
paths

12/24

Constructing OBDG and OSBDG (1/2)

vConstructing OBDG for each SD

OBDGA = {O,M}, where
� O: objects in the SD A
�� M: mn(mb,mmeL,mmeH)
- mn: message name
- mb: instance of a backward navigable message
- mmeL: probabilistic execution rate in SD
- mmeH: expected message execution rate in IOD

CD

IOD

13/24

Constructing OBDG and OSBDG (2/2)

vSynthesizing OBDGs into OSBDG

14/24

Where we are now

vModel-based change-proneness prediction

Deriving all the
Reachable Paths
for all object-pair

Synthesizing OBDGs into
Object System Behavioral

Dependency Graph

Constructing Object Behavioral
Dependency Graph for each SD

Predicting change-proneness

Calculating Behavioral
Dependency Measure for
every class in the system

Summing the number of
weighted Reachable Paths

for all class-pair

Behavioral Dependency Measurement

OBDGs

OSBDG

Reachable
Path Set

BDMs

Sum of the
weighted

reachable paths

15/24

Deriving Reachable Paths

vDeriving all reachable paths for all pair of objects
in the system using OSBDG

An example of reachable path set from o1 and o3 : {ab, b’}

16/24

Where we are now

vModel-based change-proneness prediction

CD

SD

IOD

Deriving all the
Reachable Paths
for all object-pair

Synthesizing OBDGs into
Object System Behavioral

Dependency Graph

Constructing Object Behavioral
Dependency Graph for each SD

Predicting change-proneness

Calculating Behavioral
Dependency Measure for
every class in the system

Summing the number of
weighted Reachable Paths

for all class-pair

Behavioral Dependency Measurement

OBDGs

OSBDG

Reachable
Path Set

BDMs

Sum of the
weighted
reachable
paths

17/24

Calculating BDM (1/2)

vSumming the number of weighted reachable
paths for all pair of classes in the system

� DF(s) = 1/d
- d: distance length which is the number of messages in the corresponding reachable paths

Sender
classes

Receiver
classes

c1 c2 c3 c4 c5 c6

c1 0 0.9 0.5 0.67 0 0.2

c2 0 0 0.8 1.2 0.8 0

c3 0 0 0 0.8 0 0

c4 0 0 0 0 0 0

c5 0 0 0 0 0 0

c6 0 0 0 0 0 0

Since RPS(o2,o4) = {bc, d}, SumWRP(c1,c2) = (½ x 0.8 x 1) + (1 x 0.8 x 1)

18/24

Calculating BDM (2/2)

vCalculating BDM for every class in the system

Sender
classes

Receiver
classes

c1 c2 c3 c4 c5 c6 BDM(c)

c1 0 0.9 0.5 0.67 0 0.2 2.27

c2 0 0 0.8 1.2 0.8 0 2.8

c3 0 0 0 0.8 0 0 0.8

c4 0 0 0 0 0 0 0

c5 0 0 0 0 0 0 0

c6 0 0 0 0 0 0 0

Therefore, the class c2 is likely to be changed most in the system.

19/24

Case Study (1/4)

vGoal
§ To show that BDM is the useful and additional

explanatory variable for change-proneness prediction

vExperiment Design
§ Make two multivariate regression models with different

independent variable set
• Only C&K metrics* vs. BDM in addition to C&K metrics

§ Compare goodness of the fit of those models

* S. Chidamber, C. Kemerer, and C. MIT. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6) : 476–493, 1994.

20/24

Case Study (2/4)

vStudied Environment
§ Input model: JFreeChart

• Is an open-source Java class library for generating various
types of charts

• Reversed codes (ver. 1.0.0) into UML models
– IOD is not applicable
– CD is generated from RSA 7.0
– SD is constructed based on successive synchronous calls (i.e.,

reachable paths)

SD reversed from the
successive
synchronous calls
existed in JFreeChart
source codes

21/24

Case Study (3/4)

vStudied Environment (Cont’d)
§ Tool: BADAMO (BehAvioral Dependency Analyzer of

UML MOdels)
• Calculates the BDM
• Is implemented based on EMF (Eclipse Modeling Framework)
• Imports UML 2.0 models in the format of XMI generated from

RSA (Rational Software Architect) 7.0
§ Method for building prediction model: stepwise multiple

regression
• Dependent variable: change-proneness

– Total amount of changes (source lines of code added and deleted)
across the six releases (v.1.0.1 ~ 1.0.6)

• Independent variables
– C&K metrics (NOC, DIT, WMC, RFC, CBO, LCOM) and BDM

22/24

Case Study (4/4)

vResults
§ Models with only C&K

metrics
• Explains around 56%

(adjusted R2 of 0.55)
• Selected variables

– WMC (1st), CBO (2nd),
and LCOM (3rd)

§ Model with BDM in addition
to C&K metrics

• Explains around 64% (adjusted
R2 of 0.64)

• Selected variables
– WMC (1st), BDM (2nd), CBO

(3rd), LCOM (4th), and NOC (5th)

R2 is increased by 9 percent or 20 percent of the unexplained variance using BDM.

23/24

Conclusion

vModel-based change-proneness prediction using
BDM
§ Help to redesign the change-prone classes easily

• Make a stable software
• Reduce the development cost of software

§ Can be used to visualize the problematic spots
• Improve understandability of software

24/24

Future Work

vExtend BDM to take into account other
dependencies
§ Time, etc.

vInvestigate other applications of BDM
§ Fault-proneness prediction, object allocation in a

distributed system, etc.
vVisualize change-prone classes on the modeling

tools
§ Rational Rose, ArgoUML, RSA (Rational Software

Architect), etc.

ⓒ KAIST SE LAB 2008

