
Generating various contexts from permissions
for testing Android applications

Kwangsik Song, Ah-Rim Han, Sehun Jeong, Sungdeok Cha
Presented by Ah-Rim Han

Korea University, South Korea

2015. 7. 6

Contents
• Introduction
• Overview
• Testing Android applications in various contexts
• Evaluation
• Conclusion and future Work

2

Testing for mobile applications

• Mobile application is context-aware application
– Can provide rich, context-aware contents to users
– Designed to be aware of the computing context in which it runs

and adapt and react according to its findings
– Should be testable in any environment and in any contextual

inputs

3

* http://www.peakvision.org

à Example of context-aware application:
Peak Vision*
- Medical images can be captured using a
clip-on camera adapter
- Images can be sent to the systems to
perform diagnosis remotely

à Need to test applications considering complex, various contexts

Motivation
• The existing studies have limitations

– GUI testing : Monkey (Random testing) [1] and Android GUI
Ripper (Model-based testing) [2]

• Focus on GUI events
à Difficult to find failures that could be detected by considering the

changes in the contexts

– Context-aware testing : Amalfitano’s work [3]
• Specific event sequences generated based on a limited number of

scenarios (event patterns) were considered
à Difficult to find bugs that occur in various complex contexts

à We need a systematic method for generating executing contexts

• We can easily infer the related resources using permissions
– Android application includes permissions (in a manifest file)
– By varying conditions of resources, we can simulate the

changing external environment
• States of resource conditions are changed via events

• To test Android applications, we use permissions to generate
the various executing contexts

Our idea

AndroidManifest.xml
- Permission lists

Permuting resource conditions
having variable states à

Generating various executing
contexts

[full]
[on] [on] [on]

[on]

Goal of our approach
• We provide a method for generating various executing

contexts from permissions
– Identifying related resource from permissions
– Generating various executing contexts
– Prioritizing contexts by two-level strategies

6

à Issue: executing contexts should be prioritized
because there are too many executing contexts

Overview

7

• Identifying related
resources from permissions

• Generating various executing
contexts

• Prioritizing executing
contexts

< An overview for generating various contexts after analyzing permissions >

8

Identifying related resources from
permissions
• Identifying resources from permissions
• Defining possible states for each resource

Permission Allows an app to Related Resources
[Possible States]

ACCESS_FINE_LOCATION Access precise location
from location resources

Wi-Fi[on|off]
GPS[on|off]
Radio[on|off]

* ACCESS_FINE_LOCATION
à permission for acquiring right to access detail position

9

• Executing contexts can be generated by permuting resource
conditions having variable states

Generating various executing contexts

Resource 1
[State1|State2]

Resource2
[State3|State4]

Resource 3
[State5|State6]x x

= 23 = 8 (the total number of generated executing contexts)

Wi-Fi Radio GPS
on on on

on off on

on off off

on on off

…… ….. …..

10

• Prioritizing strategies
– 1) Weighting each resource condition according to the testing

objectives
– 2) Weighting individual or combinatorial resources residing in an

executing context.

Prioritizing contexts

Ran
k

Wi-Fi GPS Radio SD Card Camera

1 on on on free enable

2 off off off full disable

3 on on on full enable

4 off on off free enable

Normal scenario
Active
Wi-Fi, GPS, Radio=on, SD card = free,
Camera = enable
Exceptional scenario
Inactive
Wi-Fi, GPS, Radio=off, SD card = full,
Camera = disable

1)

Scenarios capturing fault
behavior
- SD card = full
- Wi-Fi = off, GPS = on

2)

1)

2)

Evaluation

11

à Are open source projects
à Have development histories (e.g., bug issues)
à Contain large number of classes and methods

• Experimental design

Experimental design (1/2)
• Under each contexts, test cases (TCs) are executed

– TCs are generated from the Android GUI ripper tool [2]
– TC are also extracted manually

• Focusing on scenarios used more frequently and faulty behavior
may be more occurred

12

Subject Permission Resources[States] Total#

Experimental design (2/2)
• Research questions

1) RQ 1. Is our testing approach useful for detecting faults?

2) RQ 2. Is our prioritization technique effective in detecting faults?

13

à Number of detected bugs

à APFD (Average Percentage of Fault Detection)
à Fault detection rate

Results: Number of detected bugs

14

à (# detected bugs) / (# faults existing in the repository)
à Open Camera : 12 / 38, Subsonic: 14 / 151

Results: APFD measure

15

1) In both projects, the APFDs for Tp represent the
highest scores.
2) In Subsonic, the APFDs are not much different in
three orders
: Many of the faults are detected by small number of
executing contexts

• Subsonic

Order result

T 0.92

Tr 0.62

Tp 0.97

Order result

T 0.96

Tr 0.92

Tp 0.981)

2)

(TC 128, Fault 14)
• Open Camera

(TC 32, Fault 12)

T (generated order) , Tr (reversed order), Tp (Prioritized order using our approach)

Results: Fault detection rate

16

In both projects, Tp reached 100% of detection rate
faster by running smaller # of executing contexts
∴ The prioritized order results in the earliest
detection of the faults

• Open Camera • Subsonic
T (generated order) , Tr (reversed order), Tp (Prioritized order using our approach)

Tp
T
Tr

Tp
T
TrTp

4

T

9

Tr

32

Tp

6

T

10

Tr

20

Conclusion and future Work
• Summary

– Proposes an efficient method for generating various executing
contexts

• Future Work
– Performs the more detailed experiment
– Devises the method of considering sequences in our contexts for

simulating dynamically changing environment

17

References
• [1] Monkey. DOI= http://developer.android.com/tools/help/monkey.html
• [2] D. Amalfitano, A.R. Fasolino, P.Tramontana, S. DeCarmine, and A. M. Memon.

Using GUI ripping for automated testing of Android applications. Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering (ASE
2012), 2012. ACM, pp. 258-261

• [3] Domenico Amlfitano, Anna Rita Fasolino, Porfirio Tramontana, and Nicola
Amatucci, “Considering Con-text Events in Event-Based Testing of Mobile Applica-
tions” IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013

• [4] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution in the
android ecosystem,” in Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012, pp. 31–40.

18

Thank you.

19

