Kwangsik Song, Ah-Rim Han, Sehun Jeong, Sungdeok Cha
Presented by Ah-Rim Han
Korea University, South Korea

2015.7.6

Contents

* |ntroduction

* Overview

« Testing Android applications in various contexts
« Evaluation

* Conclusion and future Work

* http://www.peakvision.org

Testing for mobile applications

O L ’4 > Example of context-aware application:
ﬂ a Peak Vision*

- Medical images can be captured using a

@ e L< clip-on camera adapter

- Images can be sent to the systems to
perform diagnosis remotely

* Mobile application is context-aware application
— Can provide rich, context-aware contents to users

— Designed to be aware of the computing context in which it runs
and adapt and react according to its findings

— Should be testable in any environment and in any contextual
inputs

Motivation

* The existing studies have limitations
— GUI testing : Monkey (Random testing) [1] and Android GUI
Ripper (Model-based testing) [2]
« Focus on GUI events

—> Difficult to find failures that could be detected by considering the
changes in the contexts

— Context-aware testing : Amalfitano’s work [3]

« Specific event sequences generated based on a limited number of
scenarios (event patterns) were considered

-> Difficult to find bugs that occur in various complex contexts

Our idea

 We can easily infer the related resources using permissions
- Android application includes permissions (in a manifest file)

By varying conditions of resources, we can simulate the
changing external environment

« States of resource conditions are changed via events

To test Android applications, we use permissions to generate
the various executing contexts
[on] [on] [on]

- AndroidManifest. xml
© v 4

ﬂ - Permission lists
g AN O |
N on
. . [on]
\

[full]

/

| week |

/

Goal of our approach

« We provide a method for generating various executing
contexts from permissions

— ldentifying related resource from permissions
— Generating various executing contexts
— Prioritizing contexts by two-level strategies

I Overview

< An overview for generating various contexts after analyzing permissions >

Permissions of Resources of
an application mobile phones
AndroidMenifest.xml Bluetooth

Permission A oezfenca.. .| - J IdenTifying related
Pormisiond |-} 5], — resources from permissions

-
...... =e
PemissionC [|ezzl>"""

"=~ Camera

Possible combinations of

conditions having variable states ° Genera.ring VGf'iOUS execu.'.ing

Context 1 Wi-Fi ON/GPS OFF ... ConTex-'-S
Context 2 Wi-Fi OFF/GPS OFF...

Context 3 Wi-Fi ON/GPS ON...

Context 4

* Prioritizing executing
confexts

<>

Identifying related resources from
permissions

 ldentifying resources from permissions
« Defining possible states for each resource

Allows an app to | Related Resources
[Possible States]

ACCESS_FINE_LOCATION Access precise location Wi-Fi[on|off]
from location resources GPS[on|off]
Radio[on|off]

Generating various executing contexts

« Executing contexts can be generated by permuting resource
conditions having variable states

Resource 1 Resource?2 Resource 3
[Statel|State2] X [State3|Stated] X [State5|Stateb]

= 23 = 8 (the total number of generated executing contexts)

___ WiFi | Radio | ___GPS

on on on
on off on
on off off

on on off

Prioritizing contexts

 Perioritizing strategies

— 1) Weighting each resource condition according to the testing

objectives

— 2) Weighting individual or combinatorial resources residing in an

executing context.

(= [o =
|

1)= 1 free
l__z_____oif____ef_f___o_fi____iu_n_ ______________

2) E’E""Bﬁ""&? “on ful enable |
1 4 off on off free

1)

Normal scenario

Active

Wi-Fi, GPS, Radio=on, SD card = free,
Camera = enable

Exceptional scenario

Inactive
Wi-Fi, GPS, Radio=off, SD card = full,
Camera = disable

2)
Scenarios capturing fault
behavior

- SD card = full
- Wi-Fi = off, GPS = on 10

Evaluation

« Experimental design

Name Open Camera (Ver. 1.21) [11] | Subsonic for Android (Ver. 4.4) [12]
Taking pictures and providing | Playing music and video by receiving
Description various features (e.g., zooming, media files from the stream server
focusing, flashing, and (e.g., personal PC) and supports
coloring effects) offline mode and bitrates

Class # 61 265
Method # 399 1038

LOC # 3,790 16,064

11

Experimental design (1/2)

« Under each contexts, test cases (TCs) are executed

— TCs are generated from the Android GUI ripper tool [2]

— TC are also extracted manually

» Focusing on scenarios used more frequently and faulty behavior

may be more occurred

Subject Permission Resources[States] Total#
ACCESS_FINE_LocATioN | WVi-Filon|off], GPS[on]off],
Radio[on|off]
Camera [on|off], 32
Open Camera [11] CAMERA SD card|free |full] = 2°
WRITE_EXTERNAL_STORAGE SD card|free |full]
INTERNET Wi-Fi[on|off], Radio[on|off]
BLUETOOTH Bluetooth |[on|off]
RECORD_AUDIO Audio|on|off|, MIC|on|off]
READ_PHONE_STATE Radio|on|off] 128
Subsonic [12] WRITE EXTERNAL _STORAGE SD card|free|full] _ o7

WAKE_LOCK

CPU |lock |unlock|

MODIFY_AUDIO_SETTINGS

Audio|on|off]

ACCESS_NETWORK_STATE

Wi-Fi[on|off|, Radio[on|off]

READ_EXTERNAL_STORAGE

SD card|free|full]

12

Experimental design (2/2)

 Research questions
1) RQ 1. Is our testing approach useful for detecting faults?

2) RQ 2. Is our prioritization technique effective in detecting faults?

Results: Number of detected bugs

Open Camera Subnonic
Fault No. | Bug ID. (refer in [21]) | Fault No. | Bug ID. (refer in [22])
] |] 150
2 2 2 126
3 9 3 64
4 20 4 102
5 3 5 38
6 11 6 82
7 30 7 46
8 31 8 39
9 37 9 35
10 4 10 32
11 28 11 21
12 33 12 8
13 4
14 83

14

I Results: APFD measure

T (generated order) , Tr (reversed order), Tp (Prioritized order using our approach)

* Open Camera » Subsonic
(TC 32, Fault 12) (TC 128, Fault 14)
Order | result
T 0.92 T | 0.96 i 2)
o082 T 1092 |
1) Tp 0.97 T 1098 |

1) In both projects, the APFDs for Tp represent the
highest scores.

2) In Subsonic, the APFDs are not much different in
‘rhr'ee orders

: Many of the faults are detected by small number of
execu'rmg contexts

Fault Detection Rate (%)

Results: Fault detection rate

T (generated order) , Tr (reversed order), Tp (Prioritized order using our approach)

* Open Camera » Subsonic

10071

1001 I / Vs
b Prioritized Sequence i | |
i .'I / 1 using Our Approach 1 7 i i 1

' ; | T ’ S
1 "l r-o-0-0-0-0-0-0-0-0-0-0-0-0-4 | =0) 1 P | |
0T Priorig§zed Sequem:e] H 1 G- g0 ===-0-==-0-~ --d 1 [e SRS Sl Sorts SRSt SUEE It 4 1
usmg})ur Approach I I ’,’ Generated Order (m I ‘ |
™ 4 I i I I Tr |
o---0- H r
sl Y I Tr 1 _ I 1 I
1/ | | & i | 1 |
'oé 'erated Order 4’) I % I I ': I
. 1 = | 1 |
701 / c &7 i Q——0
<41 1 OH—O—0 Tp 1 5 - I Tp -
I I - I 1] I
! - 0---0----0 | 1 2 I 1} O-==0-===0 | |
"""" o sot :
ot Tp 1 T 1 1 2 Tp 1 T I
I I o---o--—-o [| = I I *---0----0 [[|
1 1 1 E 401 1 |I: 1
ol I I I 1 I I
| | | | | |
| | | 0T .- I PP |
1 t-.-o--o--.--o--o--‘ 1 J Rever*d Order (Tr) | |
o1 | i Reversed Order (Tr) | 20 » | | |
] i]]] i
o-o-o-b o oo 1 1 *o----o | | 1
5

30(-) 2 ‘ 1‘2 I 1‘4 I 1.6 I 1‘8 . 2‘0 I 2’2 I 2‘4 I 2‘6 ‘ 2‘8 . 3‘0 LOO J.. 2l ; A; / 7. 8l . 12 13 14 15 16 17 18 I
Ru 9 uting Contexts with Test Cases (Total: 32) 32 # of Run 6 ting C 10 th Test Cases (Total: 128) 20

16

Conclusion and future Work

¢ Summary

— Proposes an efficient method for generating various executing
contexts

« Future Work
— Performs the more detailed experiment

— Devises the method of considering sequences in our contexts for
simulating dynamically changing environment

References

* [1] Monkey. DOI= http://developer.android.com/tools/help/monkey.html

« [2] D. Amalfitano, A.R. Fasolino, P.Tramontana, S. DeCarmine, and A. M. Memon.
Using GUI ripping for automated testing of Android applications. Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering (ASE
2012), 2012. ACM, pp. 258-261

* [3] Domenico Amlfitano, Anna Rita Fasolino, Porfirio Tramontana, and Nicola
Amatucci, “Considering Con-text Events in Event-Based Testing of Mobile Applica-
tions” IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013

« [4] X. Weli, L. Gomez, |. Neamtiu, and M. Faloutsos, “Permission evolution in the
android ecosystem,” in Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012, pp. 31-40.

| Thank you.

